Answer: x-intercept = -94, -74, and -54
Answer:
about 252.78 ft
Step-by-step explanation:
Define angle QMP as α. Then ...
MN = 60·sin(α)
NP = 60·cos(α)
area MPN = (1/2)(MN)(NP) = 1800sin(α)cos(α)
__
PQ = 60tan(α)
area MPQ = (1/2)(MP)(PQ) = 1800tan(α)
__
The ratio of areas is 2.5, so we have ...
1800tan(α) = 2.5·1800sin(α)cos(α)
1 = 2.5cos(α)² . . . . . . divide by 1800tan(α)
cos(α) = √0.4 . . . . . . solve for cos(α)
__
Then the perimeter is ...
Perimeter = MN +NP +PQ +QM = 60sin(α) +60cos(α) +60tan(α) +60/cos(α)
= 60(sin(α) +cos(α) +tan(α) +sec(α))
= 60(0.774597 +0.632456 +1.224745 +1.581139)
= 60(4.212936) = 252.776
The perimeter of the trapezoid is about 252.776 feet.
_____
With perhaps a little more trouble, you can find the exact value to be ...
perimeter = (6√10)(7+√6+√15)
It depends, if the two sides given are adjacent to each other then yes. but you are given two opposite sides then no, because you don't know the length of one of the sides, thus not being able to calculate the perimeter
Answer:
b
Step-by-step explanation:
Answer:
Hope this helps
Step-by-step explanation:
t=6