Given the equation

which models the data tabulated below:
![\begin{tabular} {|c|c|} x&y\\[1ex] 0.5&10.4\\ 1&5.8\\ 2&3.3\\ 3&2.4\\ 4&2 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0Ax%26y%5C%5C%5B1ex%5D%0A0.5%2610.4%5C%5C%0A1%265.8%5C%5C%0A2%263.3%5C%5C%0A3%262.4%5C%5C%0A4%262%0A%5Cend%7Btabular%7D)
The linear regression equation is given by

where:

and

We extend the given table as follows:
![\begin{tabular} {|c|c|c|c|} x&y&x^2&xy\\[1ex] 0.5&10.4&0.25&5.2\\ 1&5.8&1&5.8\\ 2&3.3&4&6.6\\ 3&2.4&9&7.2\\ 4&2&16&8\\[1ex] \Sigma x=10.5&\Sigma y=23.9&\Sigma x^2=30.25&\Sigma xy=32.8 \end{tabular} \\ \\ \\ \bar{x}= \frac{\Sigma x}{n} = \frac{10.5}{5} =2.1 \\ \\ \bar{y}=\frac{\Sigma y}{n} = \frac{23.9}{5} =4.78](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%20%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%20x%26y%26x%5E2%26xy%5C%5C%5B1ex%5D%200.5%2610.4%260.25%265.2%5C%5C%201%265.8%261%265.8%5C%5C%202%263.3%264%266.6%5C%5C%203%262.4%269%267.2%5C%5C%204%262%2616%268%5C%5C%5B1ex%5D%20%5CSigma%20x%3D10.5%26%5CSigma%20y%3D23.9%26%5CSigma%20x%5E2%3D30.25%26%5CSigma%20xy%3D32.8%20%5Cend%7Btabular%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cbar%7Bx%7D%3D%20%5Cfrac%7B%5CSigma%20x%7D%7Bn%7D%20%3D%20%5Cfrac%7B10.5%7D%7B5%7D%20%3D2.1%20%5C%5C%20%5C%5C%20%5Cbar%7By%7D%3D%5Cfrac%7B%5CSigma%20y%7D%7Bn%7D%20%3D%20%5Cfrac%7B23.9%7D%7B5%7D%20%3D4.78)
Thus,

and

Therefore, the linearlized form of the equation is y = 9.234 - 2.12x
Part B:
At x = 1.6,
Yes she is correct because 1 divided by 3 will have an infinite number of 3s
Answer:
45
Step-by-step explanation:
first take the $310 and add the $50 in profit and you get $360 divide that by $8 and you get 45
Answer:
-1
Step-by-step explanation:
Answer:
(f·g)(x) = x³ -8x² +20x -16
Step-by-step explanation:
The distributive property is useful for this.
(f·g)(x) = f(x)·g(x) = (x² -6x +8)(x -2)
= x(x² -6x +8) -2(x² -6x +8)
= x³ -6x² +8x -2x² +12x -16
(f·g)(x) = x³ -8x² +20x -16
_____
<em>Additional comment</em>
I find it convenient to separate the terms of the shortest polynomial. That way, the distributive property doesn't need to be used quite so many times. Of course, any outside minus sign applies to all terms inside parentheses.