Answer:
Z = (pd + 59)/(2-p)
Step-by-step explanation:
to solve for z in the -p(d+z)=-2z+59 expression, we would open the bracket and then evaluate for the exact value of z
solution
-p(d+z)=-2z+59
-pd - pz = -2z + 59
collect the like terms
-pd -59 = -2z + pz
-pd - 59 = -z ( 2 - p)
divide both side by ( 2-p)
-pd - 59 /2-p = -z
since we are to solve for z and not -z , so we would multiply both sides by - sign
- (-pd - 59)/2-p = -(-z)
pd + 59/2-p = z
therefore
Z = (pd + 59)/(2-p)
Answer:
Step-by-step explanation:
- <em>The standard form means that the terms are ordered from biggest exponent to lowest exponent. </em>
Verify the answer options
A. <u>−3x⁵ + 4x³ + 10x²</u>
B. <u>−8x + 4x⁴ + 3x³</u>
- 1, 4, 3 - incorrect order
C. <u>x⁴ + 4x³ + 10x⁴</u>
- 4, 3, 4 - incorrect order
D. <u>x⁶ + 4x³ + 10x⁷</u>
- 6, 3, 7 - incorrect order
No because 1 has more than one output
Answer:
8x+8y
Step-by-step explanation:
y + 3x + 4y + 2x + 3y +3x
<em>With</em><em> </em><em>this</em><em> </em><em>we</em><em> </em><em>group</em><em> </em><em>x</em><em> </em><em>with</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>y</em><em> </em><em>with</em><em> </em><em>y</em><em> </em><em>and </em><em>in</em><em> </em><em>ascending</em><em> </em><em>order</em><em> </em><em>so</em><em> </em><em>x</em><em> </em><em>comes</em><em> </em><em>before</em><em> </em><em>y</em>
3x+2x+3x
And the y with y
y+4y+3y
Which is;
3x+2x+3x+y+4y+3y
8x+8y