The conditional probability illustrates that's there's a 2/8 that the event A occurs.
<h3>How to illustrate the probability?</h3>
It should be noted that probability simply means the likelihood of the occurence of an event.
In this case, it can be delivered that P(AID) and P(DIA) aren't equal.
Hence, P(D|A) has event A as its given event, resulting in 2/8 for a probability.
Learn more about probability on:
brainly.com/question/24756209
#SPJ1
Answer: $244.55
A = $250 ; r=0.002 t= 11 [From 2007 to 2018 , t=2018-2007]
Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086