Answer:
It has three supporting details in the order they will be discussed.
Step-by-step explanation:
A thesis states the points being conveyed by the author. It should be 1-2 sentences, not three. An author should have one claim, not three, to expand upon and prove with their written piece. There should be 3 specific ideas stated that prove the argument.
The process:
8/6 = 20/x
You would have to cross multiply first.
8 20 6×20= 120
6 x 8×x=8x
Then you rearrange the equation,
120=8x
And you divide by 8 ( because it has the variable next to it)
120÷8=15
So, x=15
The value of x given that the sum of exterior angle is 360 is 27
<h3 /><h3>Sum of exterior angle of a pentagon </h3>
Sum of exterior angle of a pentagon is 360°. Taking the sum of the angles and equating to 360 degrees, we will have:
2x - 20 + 2x + 50 + 3x + 10 + 3x + 50 = 360
Collect the like terms
10x + 90 = 360
Subtract 90 from both sides
10x + 90 - 90 = 360 - 90
10x = 270
x = 27
Hence the value of x given that the sum of exterior angle is 360 is 27
Learn more on exterior angles here: brainly.com/question/2546141
#SPJ1
Three consecutive odd integers are n, n+2 and n+4
n + n+2 + n+4 = -87
3n + 6 = -87
3n = -87 - 6
3n = -93
n = -93/3
n = -31
n+2 = -31 + 2 = -29
n+4 = -31 + 4 = -27
The numbers are -31, -29 and -27
Hey there!
Before we get to know an Integer and Rational Number, we have to know the Real Number system first.
1. What is Real Number System?
- Real Number System is very commonly used in mathematics. It is a number system that is "logical", at least when it comes to solving an equation.
But do you know that the Real Number system can be broken into two categorizes? And what are them?
Real Numbers can be broken into these main two categorizes which are:
- Irrational Number
- Rational Number
These numbers can also be broken into other categorizes as well! Crazy, ain't it? Well that's how maths work!
Anyways, we will skip Irrational Number since it is off-topic and not related to your question. We will talk about Rational Number instead.
2. What is Rational Number?
- Rational Number is a number that can be written in fraction form. That is a simple explanation for the Rational Number. Please lecture or note that <u>a</u><u>p</u><u>p</u><u>r</u><u>o</u><u>x</u><u>i</u><u>m</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>s</u><u> </u><u>a</u><u>r</u><u>e</u><u>n</u><u>'</u><u>t</u><u> </u><u>c</u><u>o</u><u>n</u><u>s</u><u>i</u><u>d</u><u>e</u><u>r</u><u>e</u><u>d</u><u> </u><u>a</u><u>s</u><u> </u><u>r</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u>s</u><u>.</u> Even though π ≈ 22/7 which is in fraction form but it is just an approximation which is considered as <em>I</em><em>r</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em>a</em><em>l</em><em> </em><em>N</em><em>u</em><em>m</em><em>b</em><em>e</em><em>r</em><em>.</em> Also <u>i</u><u>f</u><u> </u><u>i</u><u>n</u><u>f</u><u>i</u><u>n</u><u>i</u><u>t</u><u>y</u><u>/</u><u>e</u><u>n</u><u>d</u><u>l</u><u>e</u><u>s</u><u>s</u><u> </u><u>d</u><u>e</u><u>c</u><u>i</u><u>m</u><u>a</u><u>l</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>b</u><u>e</u><u> </u><u>w</u><u>r</u><u>i</u><u>t</u><u>t</u><u>e</u><u>n</u><u> </u><u>i</u><u>n</u><u> </u><u>f</u><u>r</u><u>a</u><u>c</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>f</u><u>o</u><u>r</u><u>m</u><u> </u><u>a</u><u>s</u><u> </u><u>w</u><u>e</u><u>l</u><u>l</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>y</u><u> </u><u>a</u><u>r</u><u>e</u><u> </u><u>c</u><u>o</u><u>n</u><u>s</u><u>i</u><u>d</u><u>e</u><u>r</u><u>e</u><u>d</u><u> </u><u>a</u><u>s</u><u> </u><u>R</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>a</u><u>l</u><u> </u><u>N</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>t</u><u>o</u><u>o</u><u>!</u>
Now we know the meaning of Rational Number. But like I said, the Rational Number can be broken into other categorizes which are:
- Integers - Whole number or number without fraction or decimal.
- Fractions and Decimals that can be written in fraction form.
And Integers can also be broken into:
- Negative Integers
- Zero
- Positive Integers
3. Conclusion and Answer
- Since Integers are subset of Rational Number, we can conclude that <u>I</u><u>n</u><u>t</u><u>e</u><u>g</u><u>e</u><u>r</u><u>s</u><u> </u><u>a</u><u>r</u><u>e</u><u> </u><u>R</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>a</u><u>l</u><u> </u><u>N</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u>.</u>
Hope this helps, and let me know if you have any doubts regarding Real Number system.