1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
7

A mixture contains five quarts of acid and water and is forty percent acid. If the mixture is to be weakened to thirty percent a

cid, how much water must be added?
Mathematics
2 answers:
Cerrena [4.2K]3 years ago
8 0

Answer:  1\dfrac{2}{3}\text{ quarts} of water must be added.

Step-by-step explanation:

Given : The total quantity of mixture = 5 quarts

The percentage of acid= 0.40

Then, total liters of acid is given by :-

0.40\times5=2\text{ quarts}

The amount of water in the given mixture : 5-2=3\text{ quarts}

The percentage of acid in in weakened mixture = 0.30

Then , the percentage of water in weakened mixture = 0.70

Let 'x' amount of water is added to mixture.

Then According to the question ,we have the following equation :-

\dfrac{\text{Water}}{\text{Acid}}=\dfrac{3+x}{2}=\dfrac{0.70}{0.30}\\\\\Rightarrow\ 3+x=\dfrac{7}{3}\times2\\\\\Righatrrow\ x=\dfrac{5}{3}=1\dfrac{2}{3}\text{ quarts}

Hence, 1\dfrac{2}{3}\text{ quarts} of water must be added.

kirill115 [55]3 years ago
4 0
In five quarts, we have 2 quarts of acid and 3 quarts of water
total = (2 + 3) = 5 quarts
concentration = 2 / 5

We want a 30% concentration
total volume = 2 + x
.30 = 2 / (2+x)
.6 + .30 x  = 2
.30x = 1.4
x = 4.66666 gallons of water
(or we need to add 1.666666 gallons of water)

Double Check:
acid concentration = 2 / (2 + 4.666666)
acid concentration = .30


You might be interested in
Find the solution of the system of equations.
avanturin [10]

Answer:

3

Step-by-step explanation:

The number is 3.

Step-by-step explanation:

Finding the Number

To find the number, we have to translate the problem above to an algebraic equation. The algebraic equation refers to the statement of the equality of two algebraic expressions.

Equation:

Let "x" be the number.

4 is divided by a number - 4/x

3 divided by the number decreased by 2 - 3/x-2

"4 is divided by a number is equal to 3 divided by the number decreased by 2"

4/x = 3/x-2

Solution:

Cross multiply.

4/x = 3/x-2

x(3) = 4(x-2)

3x = 4x - 8

(Combine similar terms.)

3x - 4x = - 8

- x = - 8

- x/- 1 = - 8/- 1

x = 8

Final Answer:

8

Checking:

4/x = 3/x-2

4/8 = 3/8-2

1/2 = 3/6

1/2 = 1/2 ✔

7 0
3 years ago
An object that is made up of more than one type of solid
Rzqust [24]

the answer can be cone

6 0
3 years ago
Is 3 1/2 cups more or less than 1 liter? Note: 1 cup is about 236.6 milliliters
Evgesh-ka [11]
Less by far because 3.5 cups would be less than half

6 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Read 2 more answers
Halp
vekshin1

Answer:

37.46

Step-by-step explanation:

I think not sure tho

3 0
2 years ago
Other questions:
  • Please I really need help with 10-17
    12·1 answer
  • Q = 15<br> a = 16<br> What would you do with q and a to get 240?
    15·1 answer
  • Multiply. The question is in the picture.
    15·1 answer
  • Which expression has a negative value A. 2+12 B. (-3)(-8) C. 10-(-18) D. -35÷5
    8·2 answers
  • Let g(x)= -3x and h(x) x^2+3 Find (g°h)(0)
    15·1 answer
  • 11/8 Oz as a mixed number
    9·1 answer
  • How do you solve this equation ​
    9·1 answer
  • Can someone help me
    13·1 answer
  • Mathematics plz help
    10·1 answer
  • A natural history museum surveyed the people visiting the museum for one month and created a circle graph to show the age of the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!