-3 =-2x - 7
Add 7 to both sides
4=-2x
Divide by -2
-2 = x
Amount owed at the end of 1 year is 3640
<h3><u>Solution:</u></h3>
Given that yoko borrows $3500.
Rate of interest charged is 4% compounded each year
Need to determine amount owed at the end of 1 year.
In our case
:
Borrowed Amount that is principal P = $3500
Rate of interest r = 4%
Duration = 1 year and as it is compounded yearly, number of times interest calculated in 1 year n = 1
<em><u>Formula for Amount of compounded yearly is as follows:</u></em>

Where "p" is the principal
"r" is the rate of interest
"n" is the number of years
Substituting the values in above formula we get


Hence amount owed at the end of 1 year is 3640
Answer:
24sqrt(2)x
Step-by-step explanation:
Answer:
1c

1d

Step-by-step explanation:
From the question we are told that
The probability of telesales representative making a sale on a customer call is 
The mean is 
Generally the distribution of sales call made by a telesales representative follows a binomial distribution
i.e
and the probability distribution function for binomial distribution is
Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the mean is mathematically represented as

=> 
=> 
Generally the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95 is mathematically represented as

=> 
=> ![P( X \ge 1) = 1 - [ ^{n}C_0 * (0.15 )^0 * (1- 0.15)^{n-0}] > 0.95](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%201%29%20%3D%201%20-%20%5B%20%5E%7Bn%7DC_0%20%2A%20%20%280.15%20%29%5E0%20%2A%20%20%281-%200.15%29%5E%7Bn-0%7D%5D%20%3E%200.95)
=> ![1 - [1 * 1* (0.85)^{n}] > 0.95](https://tex.z-dn.net/?f=%201%20-%20%5B1%20%20%2A%20%201%2A%20%20%280.85%29%5E%7Bn%7D%5D%20%3E%200.95)
=> ![[(0.85)^{n}] > 0.05](https://tex.z-dn.net/?f=%20%20%5B%280.85%29%5E%7Bn%7D%5D%20%3E%200.05)
taking natural log of both sides

=> 