This is a matter of plugging in. Specifically 7 for L.
T = 2πsqrt(7/32)
T = (6.28319...)(0.46771...)
T is about 2.93871 seconds
Present value of annuity PV = P(1 - (1 + r/t)^-nt) / (r/t)
where: p is the monthly payment, r is the APR = 14.12% = 0.1412, t is the number of payments in one year = 12, n is the number of years = 2.
1,120.87 = P(1 - (1 + 0.1412/12)^(-2 x 12)) / (0.1412 / 12)
0.1412(1120.87) = 12P(1 - (1 + 0.1412/12)^-24)
P = 0.1412(1120.87) / 12(1 - (1 + 0.1412/12)^-24) = $53.88
Minimum monthly payment = 3.15% of 1120.87(1 + 0.1412/12) = 0.0315 x 1120.87(1 + 0.1412/12) = $35.72
Therefore, his first payment will be greater than the minimum payment by 53.88 - 35.72 = $18.16
Answer:
3:4
Step-by-step explanation:
8/6=4/3
12/9=4/3
16/12=4/3
the answer is 95.
Step-by-step explanation:
180-85=95