Step-by-step explanation:
start by setting each equation to each other

first we are going to subtract 2x from both side of the equation

now subtract 1 from both sides

now divide by -3 on both sides
Answer:
6 hours
Step-by-step explanation:
8 × 3/4 hours
= (8 x 3) / 4
= 24/4
= 6 hours
Answer:
There are a total of 23 cars with air conditioning and automatic transmission but not power steering
Step-by-step explanation:
Let A be the cars that have Air conditioning, B the cars that have Automatic transmission and C the cars that have pwoer Steering. Lets denote |D| the cardinality of a set D.
Remember that for 2 sets E and F, we have that

Also,
|E| = |E ∩F| + |E∩F^c|
We now alredy the following:
|A| = 89
|B| = 99
|C| = 74

|(A \cup B \cup C)^c| = 24
|A \ (B U C)| = 24 (This is A minus B and C, in other words, cars that only have Air conditioning).
|B \ (AUC)| = 65
|C \ (AUB)| = 26

We want to know |(A∩B) \ C|. Lets calculate it by taking the information given and deducting more things
For example:
99 = |B| = |B ∩ C| + |B∩C^c| = 11 + |B∩C^c|
Therefore, |B∩C^c| = 99-11 = 88
And |A ∩ B ∩ C^c| = |B∩C^c| - |B∩C^c∩A^c| = |B∩C^c| - |B \ (AUC)| = 88-65 = 23.
This means that the amount of cars that have both transmission and air conditioning but now power steering is 23.
Step-by-step explanation:
<h2>
<em><u>concept :</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2>
<em><u>5y + 4x = 35</u></em></h2><h2 /><h2>
<em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>