The demand equation illustrates the price of an item and how it relates to the demand of the item.
- The slope of the demand function is -1/2
- The equation of the demand function is:

- The price that maximizes her revenue is: Ghc 85
From the question, we have:


The number of plates (x) decreases by 10, while the price (y) increases by 5. The table of value is:

The slope (m) is calculated using:

So, we have:



The equation of the demand is as follows:
The initial number of plates (300) decreases by 10 is represented as: (300 - 10x).
Similarly, the initial price (20) increases by 5 is represented as: (20 + 5x).
So, the demand equation is:

Open the brackets to calculate the maximum revenue


Equate to 0

Differentiate with respect to x

Collect like terms

Divide by 100

So, the price at maximum revenue is:



In conclusion:
- The slope of the demand function is -1/2
- The equation of the demand function is:

- The price that maximizes her revenue is: Ghc 85
Read more about demand equations at:
brainly.com/question/21586143
Answer:
23.8 i think
Step-by-step explanation:
Answer is 7.b because of the angles
Answer:
(5, - 4 )
Step-by-step explanation:
Given the 2 equations
2x + 3y = - 2 → (1)
3x - y = 19 → (2)
Multiplying (2) by 3 and adding to (1) will eliminate the y- term
9x - 3y = 57 → (3)
Add (1) and (3) term by term to eliminate y
(2x + 9x) + (3y - 3y) = (- 2 + 57), that is
11x = 55 ( divide both sides by 5 )
x = 5
Substitute x = 5 into either of the 2 equations and solve for y
Substituting into (1)
2(5) + 3y = - 2
10 + 3y = - 2 ( subtract 10 from both sides )
3y = - 12 ( divide both sides by 3 )
y = - 4
Solution is (5, - 4 )
Answer:
You are awesome :)
Step-by-step explanation:
Thank you!!