We are interested in finding an estimator for Var (Xi), and propose to use V=-n (1-Xn). 0/2 puntos (calificable) Now, we are int
erested in the bias of V. Compute: E [V]-Var (Xi)-[n Using this, find an unbiased estimator V for p (1 - p) if n22. rite barX_n for Л n . 72 1--X 7t
1 answer:
Here is the full question .
We are interested in finding an estimator for
and propose to use :

Now; we are interested in the basis of 
Compute :
![E \ \ [ \bar V] - Var (X_i) =](https://tex.z-dn.net/?f=E%20%20%5C%20%5C%20%20%5B%20%5Cbar%20V%5D%20-%20Var%20%28X_i%29%20%20%3D)
Using this; find an unbiased estimator
for 
Write 
Answer:
Step-by-step explanation:


![E( \bar X^2 _ n) = Var (\bar X_n) + [E(\bar X_n)]^2 \\ \\ = \dfrac{p(1-p)}{n}+ p \\ \\ = p^2 + \dfrac{p(1-p)}{n} \\ \\ \\ \hat V = \bar X_n (1- \bar X_n ) = \bar X_n - \bar X_n ^2 \\ \\ E [ \hat V] = E [ \bar X_n - \bar X_n^2] \\ \\ = E[\bar X_n ] - E [\bar X^2_n] \\ \\ = p-(p^2 + \dfrac{p(1-p)}{n}) \\ \\ = p-p^2 -\dfrac{p(1-p)}{n}](https://tex.z-dn.net/?f=E%28%20%5Cbar%20X%5E2%20_%20n%29%20%20%3D%20Var%20%28%5Cbar%20X_n%29%20%2B%20%5BE%28%5Cbar%20X_n%29%5D%5E2%20%5C%5C%20%5C%5C%20%3D%20%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%2B%20p%20%20%5C%5C%20%5C%5C%20%3D%20p%5E2%20%2B%20%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%20%20%20%5C%5C%20%5C%5C%20%5C%5C%20%5Chat%20V%20%3D%20%5Cbar%20X_n%20%281-%20%5Cbar%20X_n%20%29%20%3D%20%5Cbar%20X_n%20-%20%5Cbar%20X_n%20%5E2%20%20%5C%5C%20%5C%5C%20%20E%20%5B%20%5Chat%20V%5D%20%3D%20E%20%5B%20%5Cbar%20X_n%20-%20%5Cbar%20X_n%5E2%5D%20%5C%5C%20%5C%5C%20%3D%20E%5B%5Cbar%20X_n%20%5D%20-%20E%20%5B%5Cbar%20X%5E2_n%5D%20%20%5C%5C%20%5C%5C%20%3D%20p-%28p%5E2%20%2B%20%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D%29%20%5C%5C%20%5C%5C%20%3D%20p-p%5E2%20-%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D)
![=p(1-p)[1-\dfrac{1}{n}] = p(1-p)\dfrac{n-1}{n}](https://tex.z-dn.net/?f=%3Dp%281-p%29%5B1-%5Cdfrac%7B1%7D%7Bn%7D%5D%20%3D%20p%281-p%29%5Cdfrac%7Bn-1%7D%7Bn%7D)
![Bias \ (\bar V ) = E ( \hat V) - Var (X_i) \\ \\ = p(1-p) [1-\dfrac{1}{n}] - p(1-p) \\ \\ - \dfrac{p(1-p)}{n}](https://tex.z-dn.net/?f=Bias%20%5C%20%20%28%5Cbar%20V%20%29%20%3D%20E%20%28%20%5Chat%20V%29%20-%20Var%20%28X_i%29%20%5C%5C%20%5C%5C%20%3D%20p%281-p%29%20%5B1-%5Cdfrac%7B1%7D%7Bn%7D%5D%20-%20p%281-p%29%20%20%5C%5C%20%5C%5C%20-%20%5Cdfrac%7Bp%281-p%29%7D%7Bn%7D)
Thus; we have:
![E [\hat V] = p(1-p ) \dfrac{n-1}{n}](https://tex.z-dn.net/?f=E%20%5B%5Chat%20V%5D%20%3D%20p%281-p%20%29%20%5Cdfrac%7Bn-1%7D%7Bn%7D)
![E [\dfrac{n}{n-1} \ \ \bar V] = p(1 -p)](https://tex.z-dn.net/?f=E%20%5B%5Cdfrac%7Bn%7D%7Bn-1%7D%20%5C%20%5C%20%5Cbar%20V%5D%20%3D%20p%281%20-p%29)
![E [\dfrac{n}{n-1} \ \ \bar X_n (1- \bar X_n )] = p (1-p)](https://tex.z-dn.net/?f=E%20%5B%5Cdfrac%7Bn%7D%7Bn-1%7D%20%5C%20%5C%20%20%5Cbar%20X_n%20%281-%20%5Cbar%20X_n%20%29%5D%20%3D%20p%20%281-p%29)
Therefore;


You might be interested in
Answer:

Step-by-step explanation:
Given,
Side of the square

Therefore, area of the square = side × side



10x10x10x10x10
These Extra letters mean nothing difufnfhvhfjfjdjfjggybjfjffjfj
Answer:
49.08
Step-by-step explanation:
Im right trust me
Answer:
B
Step-by-step explanation:
Answer:
Step-by-step explanation:
So distribute the four, then subtract that answer from both sides