Im thinking the 3rd one . I’m not 100 percent sure.
Answer:
a)0.6192
b)0.7422
c)0.8904
d)at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.
Step-by-step explanation:
Let z(p) be the z-statistic of the probability that the mean price for a sample is within the margin of error. Then
z(p)=
where
- Me is the margin of error from the mean
- s is the standard deviation of the population
a.
z(p)=
≈ 0.8764
by looking z-table corresponding p value is 1-0.3808=0.6192
b.
z(p)=
≈ 1.1314
by looking z-table corresponding p value is 1-0.2578=0.7422
c.
z(p)=
≈ 1.6
by looking z-table corresponding p value is 1-0.1096=0.8904
d.
Minimum required sample size for 0.95 probability is
N≥
where
- z is the corresponding z-score in 95% probability (1.96)
- s is the standard deviation (50)
- ME is the margin of error (8)
then N≥
≈150.6
Thus at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.
I got an answer of 58.
Subtract 10 from the side length of 24 to get 14.
And use the side length of 5 to find another side length that also equals 5.
In total all your side lengths would be 10,5,5,24,14. And all of them together to arrive at an answer of 58.
Has infinitely many solutions.
Answer:
i think ur supposed to do 135 divided by 3?
Step-by-step explanation:
tell me if im right or wrong so then i can help