A polynomial function of least degree with integral coefficients that has the
given zeros 
Given
Given zeros are 3i, -1 and 0
complex zeros occurs in pairs. 3i is one of the zero
-3i is the other zero
So zeros are 3i, -3i, 0 and -1
Now we write the zeros in factor form
If 'a' is a zero then (x-a) is a factor
the factor form of given zeros

Now we multiply it to get the polynomial

polynomial function of least degree with integral coefficients that has the
given zeros 
Learn more : brainly.com/question/7619478
Answer:
x = 12
Step-by-step explanation:
Remark
These two angles are corresponding angles and as such, they are equal.
Equation
8x+ 36 = 5x + 72
Solution
Subtract 5x from both sides
8x - 5x + 36 = 5x - 5x + 72 Combine like terms.
3x + 36 = 72 Subtract 36 from both sides
3x + 36 - 36 = 72 - 36 Collect like terms
3x = 36 Divide by 3
3x/3 = 36/3 Divide
x = 12 Answer
Answer:
yes i agree x+78
Step-by-step explanation:
i dont want my thing removed
Answer:
perp. : 1/3= m
y + 8 = 1/3(x -4): answer is c
y + 24/3 = (1/3)x - 4/3
y = (1/3)x - 28/3
Step-by-step explanation:
answer is c