The MN matrix is
.
What is matrix?
A matrix is a rectangular array or table with rows and columns of numbers, symbols, or expressions that is used to represent a mathematical object or an attribute of one. is a matrix having two rows and three columns, for instance.
Given ![M=\left[\begin{array}{cc} 1 & 0 \\ -4 & 3 \\ 2 & 5 \end{array}\right]](https://tex.z-dn.net/?f=M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%201%20%26%200%20%5C%5C%20-4%20%26%203%20%5C%5C%202%20%26%205%20%5Cend%7Barray%7D%5Cright%5D)
![N=\left[\begin{array}{ccc}-2 & 1 & 0 \\3 & 2 & -1\end{array}\right]](https://tex.z-dn.net/?f=N%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%20%26%201%20%26%200%20%5C%5C3%20%26%202%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
M is a matrix with 3 * 2 dimension and N is a matrix with 2 * 3 dimension.
So finding MN is possible and the dimension will be 3 * 3.
Now,
![MN=\left[\begin{array}{cc}1 & 0 \\-4 & 3 \\2 & 5\end{array}\right] \times \left[\begin{array}{ccc}-2 & 1 & 0 \\3 & 2 & -1\end{array}\right]\\= \left[\begin{array}{ccc}1 \times (-2)+0 \times 3 & 1 \times 1+0 \times 2 & 1 \times 0+0 \times (-1) \\(-2) \times (-4)+3 \times 3 & (-4) \times 1+3 \times 2 & (-4) \times 0+3 \times (-1) \\2 \times (-2)+5 \times 3 & 2 \times 1+5 \times 2 & 2 \times 0+5 \times (-1) \\\end{array}\right]\\](https://tex.z-dn.net/?f=MN%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%20%26%200%20%5C%5C-4%20%26%203%20%5C%5C2%20%26%205%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%20%26%201%20%26%200%20%5C%5C3%20%26%202%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%20%5Ctimes%20%28-2%29%2B0%20%5Ctimes%203%20%26%201%20%5Ctimes%201%2B0%20%5Ctimes%202%20%26%201%20%5Ctimes%200%2B0%20%5Ctimes%20%28-1%29%20%5C%5C%28-2%29%20%5Ctimes%20%28-4%29%2B3%20%5Ctimes%203%20%26%20%28-4%29%20%5Ctimes%201%2B3%20%5Ctimes%202%20%26%20%28-4%29%20%5Ctimes%200%2B3%20%5Ctimes%20%28-1%29%20%5C%5C2%20%5Ctimes%20%28-2%29%2B5%20%5Ctimes%203%20%26%202%20%5Ctimes%201%2B5%20%5Ctimes%202%20%26%202%20%5Ctimes%200%2B5%20%5Ctimes%20%28-1%29%20%5C%5C%5Cend%7Barray%7D%5Cright%5D%5C%5C)
![=\left[\begin{array}{ccc}-2 & 1 & 0 \\17 & 2 & -3\\11 & 12 & -5\end{array}\right]\\](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%20%26%201%20%26%200%20%5C%5C17%20%26%202%20%26%20-3%5C%5C11%20%26%2012%20%26%20-5%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Therefore the MN matrix is
.
To learn more about matrix from the given link
brainly.com/question/94574
#SPJ1
Answer: 82975.68 apex
Step-by-step explanation:
Y = 2/3x - 2....the y int here is -2
and u want a line with a slope of -2/3 and a y int of -2...
y = -2/3x - 2.....so u have a slope of -2/3 (means ur line is decreasing)....and a y int of -2...means ur line crosses the y axis at (0,-2)
ur x int can be found by subbing in 0 for y and solving for x
0 = -2/3x - 2
2/3x = -2
x = -2 * 3/2
x = - 3.....and u have an x int(where ur line crosses the x axis) at (-3,0)
so ur graph for this is : the 4th graph...the last one
Answer with Step-by-step explanation:
(3.a) GCD(343,550), LCM(343, 550).
343=7×7×7
550=5×5×2×11
GCD(343,550)=1
LCM(343,550)=7×7×7×5×5×2×11=188650
(3.b) GCD(89, 110), LCM(89, 110).
89=1×89
110=5×2×11
GCD(89, 110)=1
LCM(89, 110)=89×5×2×11=9790
(3.c) GCD(870, 222), LCM(870, 222).
870=2×3×5×29
222=2×3×37
GCD(870, 222)=2×3=6
LCM(870, 222)=2×3×5×29×37=32190