Answer:
a = 2, b = -9, c = 3
Step-by-step explanation:
Replacing x, y values of the points in the equation y = a*x^2 + b*x +c give the following:
(-1,14)
14 = a*(-1)^2 + b*(-1) + c
(2,-7)
-7 = a*2^2 + b*2 + c
(5, 8)
8 = a*5^2 + b*5 + c
Rearranging:
a - b + c = 14
4*a + 2*b + c = -7
25*a + 5*b + c = 8
This is a linear system of equations with 3 equations and 3 unknows. In matrix notation the system is A*x = b whith:
A =
1 -1 1
4 2 1
25 5 1
x =
a
b
c
b =
14
-7
8
Solving A*x = b gives x = Inv(A)*b, where Inv(A) is the inverse matrix of A. From calculation software (I used Excel) you get:
inv(A) =
0.055555556 -0.111111111 0.055555556
-0.388888889 0.444444444 -0.055555556
0.555555556 0.555555556 -0.111111111
inv(A)*b
2
-9
3
So, a = 2, b = -9, c = 3
After using distributive property and combining like terms the answer is -2
The answer is 22 minutes:
20x for Tatsu and 10x for Andy
30x = 11
x = 11/30
11/30 * 60 = 22
Five times two times three times fifteen
General Idea:
Domain of a function means the values of x which will give a DEFINED output for the function.
Applying the concept:
Given that the x represent the time in seconds, f(x) represent the height of food packet.
Time cannot be a negative value, so

The height of the food packet cannot be a negative value, so

We need to replace
for f(x) in the above inequality to find the domain.
![-15x^2+6000\geq 0 \; \; [Divide \; by\; -15\; on\; both\; sides]\\ \\ \frac{-15x^2}{-15} +\frac{6000}{-15} \leq \frac{0}{-15} \\ \\ x^2-400\leq 0\;[Factoring\;on\;left\;side]\\ \\ (x+200)(x-200)\leq 0](https://tex.z-dn.net/?f=%20-15x%5E2%2B6000%5Cgeq%200%20%5C%3B%20%5C%3B%20%20%5BDivide%20%5C%3B%20by%5C%3B%20-15%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5D%5C%5C%20%5C%5C%20%5Cfrac%7B-15x%5E2%7D%7B-15%7D%20%2B%5Cfrac%7B6000%7D%7B-15%7D%20%5Cleq%20%5Cfrac%7B0%7D%7B-15%7D%20%5C%5C%20%5C%5C%20x%5E2-400%5Cleq%200%5C%3B%5BFactoring%5C%3Bon%5C%3Bleft%5C%3Bside%5D%5C%5C%20%5C%5C%20%28x%2B200%29%28x-200%29%5Cleq%200%20)
The possible solutions of the above inequality are given by the intervals
. We need to pick test point from each possible solution interval and check whether that test point make the inequality
true. Only the test point from the solution interval [-200, 200] make the inequality true.
The values of x which will make the above inequality TRUE is 
But we already know x should be positive, because time cannot be negative.
Conclusion:
Domain of the given function is 