Answer:
84
Step-by-step explanation:
Pretend her first 3 quizzes were all 83 since that was the average. So the 4th was 87.
83+83+83+87 = 336
Divide by the total number of quizzes because they are equally weighted.
336/4 = 84
Her new average score is 84.
Answer:
0 cm³
Step-by-step explanation:
the lost of water =
(5×24)/12 x 1/10 × 18000
= 10/10 × 18000 = 18,000 cm³
so, the remaining water in the tub=
18,000 - 18,000 = 0 cm³
(the tub is empty)
When x<span> approaches to </span><span>+∞</span><span> the function </span><span>e^<span>3x</span></span><span> becomes much bigger then </span><span>e^<span>−3x</span></span><span>, which obviously means that </span><span>e^<span>−3x</span></span><span> can be neglected in both numerator and denominator.
</span><span>
Here's how I figured this out:
</span><span>lim <span>x →+∞ </span></span>= (<span><span><span>e^(<span>3x))</span></span>− (<span>e^(<span>−3x)) / (</span></span></span><span><span>e^<span>3x)) </span></span>+ (<span>e^(<span>−3x)) </span></span></span></span>= <span>lim <span>x → +∞ </span></span><span><span>e^<span>3x / </span></span><span>e^<span>3x </span></span></span>= 1
The solution to the given differential equation is yp=−14xcos(2x)
The characteristic equation for this differential equation is:
P(s)=s2+4
The roots of the characteristic equation are:
s=±2i
Therefore, the homogeneous solution is:
yh=c1sin(2x)+c2cos(2x)
Notice that the forcing function has the same angular frequency as the homogeneous solution. In this case, we have resonance. The particular solution will have the form:
yp=Axsin(2x)+Bxcos(2x)
If you take the second derivative of the equation above for yp , and then substitute that result, y′′p , along with equation for yp above, into the left-hand side of the original differential equation, and then simultaneously solve for the values of A and B that make the left-hand side of the differential equation equal to the forcing function on the right-hand side, sin(2x) , you will find:
A=0
B=−14
Therefore,
yp=−14xcos(2x)
For more information about differential equation, visit
brainly.com/question/18760518