Answer:
Part 1) m∠EFG=94°
Part 2) m∠GFH=86°
Step-by-step explanation:
we know that
m∠EFG+m∠GFH=180° -----> by linear pair (given problem)
we have
m∠EFG=3n+22
m∠GFH=2n+38
substitute the values
(3n+22)°+(2n+38)°=180°
Solve for n
(5n+60)=180
5n=180-60
5n=120
n=24
<em>Find the measure of angle EFG</em>
m∠EFG=3n+22
substitute the value of n
m∠EFG=3(24)+22=94°
<em>Find the measure of angle GFH</em>
m∠GFH=2n+38
substitute the value of n
m∠GFH=2(24)+38=86°
Answer:
1
Step-by-step explanation:
Because it y is 0 then we can find the X intercepts. so there will be one X intercept.
Answer:
7/25
Step-by-step explanation:
θ lies in quadrant ii
so 2θ lies in quadrant iv
csc θ=5/3
sin θ=3/5 (sin θ=1/csc θ)
[cos(α+β)=cosαcosβ-sinαsinβ]
cos (2θ)=cos(θ+θ)=cos θ cos θ-sin θ sin θ=cos² θ-sin ²θ=1-sin²θ-sin²θ=1-2sin²θ
=1-2 (3/5)²
=1-2(9/25)
=1-18/25
=(25-18)/25
=7/25
<u>Solution</u><u>:</u>


- Now, square root and square gets cancel out in the LHS. And in the RHS, apply the identity: (a + b)² = a² + 2ab + b².

- Now, transpose 4x and 4 to LHS.

- Now, do the addition and subtraction.

<u>Answer</u><u>:</u>
<u>x </u><u>=</u><u> </u><u>±</u><u> </u><u>3</u>
Hope you could understand.
If you have any query, feel free to ask.