1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
3 years ago
8

I need help plz quick:))

Mathematics
1 answer:
GenaCL600 [577]3 years ago
7 0
The picture is completely blank no writing??
You might be interested in
SEE ATTACHED
fenix001 [56]
To me personally, the first bit f(g(x)) is easy and the domain is tricky. Let's try explain this.

A function takes an input number and returns an output number depending on the function. Look at f(x) = x+3, if we let the input number be 2 then we say that f(2) = 5. We could do f(π) to give us π+3 or even f(x²) to give us x² +3. The trick is to substitute the input into the function equation.

You have been asked to find f(g(x)). You know f(x) = \frac{1+x}{1-x}. Putting numbers in at this point would be easy (try work out f(2), you'll do it really quick) but you have to put in g(x).

f(g(x)) = \frac{1+g(x)}{1-g(x)}
we also know that g(x) = \frac{x}{1-x} so we can say that
f(g(x)) = \frac{1+ \frac{x}{1-x} }{1- \frac{x}{1-x} } and that is f(g(x)) but the question requires that we simplify it so
\frac{1+ \frac{x}{1-x} }{1- \frac{x}{1-x} }  =  \frac{ \frac{1-x}{1-x} +  \frac{x}{1-x} }{ \frac{1-x}{1-x} - \frac{x}{1-x} } =  \frac{ \frac{1}{1-x} }{ \frac{1-2x}{1-x} } =  \frac{1}{1-2x}

f(g(x)) = \frac{1}{1-2x}

Now for the tricky bit (for me, at least). The domain is the full set of values that you can 'put in to' the function and still get a real value out. So how do we work out what numbers 'break' the function? I like to use the fact that DIVIDING BY ZERO IS IMPOSSIBLE. What value of x can we put into the function to make it so the function is being divided by 0? i.e. 1-2x = 0 solve that and you have a value of x that isn't part of the domain.

This means the domain is all real numbers EXCEPT the solution to that equation. (Because if we put that value into f(g(x)) it's impossible to get a value out.)

[I know this was a lot to read, if you have any questions or don't get anything feel free to message me or leave a comment.]

5 0
3 years ago
Find an equation for the nth Term of a geometric sequence where the second and fifth terms or -8 and 512, respectively
zhenek [66]

Answer:

32

Step-by-step explanation:

5 0
4 years ago
Read 2 more answers
A tv that normally cost $800
sukhopar [10]

what is the question it might be an Sony-75"

6 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Please help me with this
4vir4ik [10]

Answer:

3, 8, 12, 12, 14, 20, 21, 23, 26, 34

stem         leaf

0               3     8

1                 2     2       4               (you have 12,12,14)

2                0      1       3        6    ( numbers 20,21,23,26)

3                 4                               ( number 34)

6 0
4 years ago
Read 2 more answers
Other questions:
  • Translation:2 units right and 7 units down
    11·1 answer
  • Perform the indicated operation 1/3 divide 3/8
    10·2 answers
  • Find the 10th term of the geometric sequence
    7·2 answers
  • What is the area of the figure shown?
    5·1 answer
  • Prove: Let x and y be positive real numbers. If x ≤ y, then √x ≤ √y.
    5·1 answer
  • Solution of. sin 18​
    9·1 answer
  • A train travels 63 kilometers in 2 hours, and then 87 kilometers in 2 hours. What is its average speed?
    7·2 answers
  • Find the slope intercept form of the equation that passes through the given point and is parallel to the given line
    9·1 answer
  • Please can someone help me with this
    9·1 answer
  • Hi i need help please
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!