1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
3 years ago
11

2) 4 tot he power of 3 = _______

Mathematics
1 answer:
Ghella [55]3 years ago
8 0

Answer:

64

Step-by-step explanation:

4^3=64

4*4=16

16*4=64

You might be interested in
IF l || m , find the values of x and y
egoroff_w [7]

Answer:

x = 8

y = 21

Step-by-step explanation:

(7x + 12)° and (12x - 28)° are alternate interior angles. Alternate interior angles are congruent. Therefore:

(7x + 12)° = (12x - 28)°

Solve for x

7x + 12 = 12x - 28

Collect like terms

7x - 12x = - 12 - 28

-5x = -40

Divide both sides by -5

-5x/-5 = -40/-5

x = 8

(12x - 28)° + (9y - 77)° = 180° (linear pair)

To find y, plug in the value for x = 8.

12(8) - 28 + 9y - 77 = 180

96 - 28 + 9y - 77 = 180

Combine like terms

- 9 + 9y = 180

Add 9 to both sides

-9 + 9y + 9 = 180 + 9

9y = 189

Divide both sides by 9

9y/9 = 189/9

y = 21

5 0
3 years ago
Х- а<br>x-b<br>If f(x) = b.x-a÷b-a + a.x-b÷a - b<br>Prove that: f (a) + f(b) = f (a + b)​
GenaCL600 [577]

Given:

Consider the given function:

f(x)=\dfrac{b\cdot(x-a)}{b-a}+\dfrac{a\cdot(x-b)}{a-b}

To prove:

f(a)+f(b)=f(a+b)

Solution:

We have,

f(x)=\dfrac{b\cdot(x-a)}{b-a}+\dfrac{a\cdot (x-b)}{a-b}

Substituting x=a, we get

f(a)=\dfrac{b\cdot(a-a)}{b-a}+\dfrac{a\cdot (a-b)}{a-b}

f(a)=\dfrac{b\cdot 0}{b-a}+\dfrac{a}{1}

f(a)=0+a

f(a)=a

Substituting x=b, we get

f(b)=\dfrac{b\cdot(b-a)}{b-a}+\dfrac{a\cdot (b-b)}{a-b}

f(b)=\dfrac{b}{1}+\dfrac{a\cdot 0}{a-b}

f(b)=b+0

f(b)=b

Substituting x=a+b, we get

f(a+b)=\dfrac{b\cdot(a+b-a)}{b-a}+\dfrac{a\cdot (a+b-b)}{a-b}

f(a+b)=\dfrac{b\cdot (b)}{b-a}+\dfrac{a\cdot (a)}{-(b-a)}

f(a+b)=\dfrac{b^2}{b-a}-\dfrac{a^2}{b-a}

f(a+b)=\dfrac{b^2-a^2}{b-a}

Using the algebraic formula, we get

f(a+b)=\dfrac{(b-a)(b+a)}{b-a}          [\because b^2-a^2=(b-a)(b+a)]

f(a+b)=b+a

f(a+b)=a+b               [Commutative property of addition]

Now,

LHS=f(a)+f(b)

LHS=a+b

LHS=f(a+b)

LHS=RHS

Hence proved.

5 0
2 years ago
State the number of possible triangles that can be formed using the given measurements.
romanna [79]

Answer:  39) 1              40) 2

                41) 1              42) 0

<u>Step-by-step explanation:</u>

39)     ∠A = ?        ∠B = ?       ∠C = 129°

            a = ?          b = 15         c = 45

Use Law of Sines to find ∠B:

\dfrac{\sin B}{b}=\dfrac{\sin C}{c} \rightarrow\quad \dfrac{\sin B}{15}=\dfrac{\sin 129}{45}\rightarrow \quad \angle B=15^o\quad or \quad \angle B=165^o

If ∠B = 15°, then ∠A = 180° - (15° + 129°) = 36°

If ∠B = 165°, then ∠A = 180° - (165° + 129°) = -114°

Since ∠A cannot be negative then ∠B ≠ 165°

∠A = 36°        ∠B = 15°       ∠C = 129°       is the only valid solution.

40)      ∠A = 16°        ∠B = ?       ∠C = ?

             a = 15           b = ?         c = 19

Use Law of Sines to find ∠C:

\dfrac{\sin A}{a}=\dfrac{\sin C}{c} \rightarrow\quad \dfrac{\sin 16}{15}=\dfrac{\sin C}{19}\rightarrow \quad \angle C=20^o\quad or \quad \angle C=160^o

If ∠C = 20°, then ∠B = 180° - (16° + 20°) = 144°

If ∠C = 160°, then ∠B = 180° - (16° + 160°) = 4°

Both result with ∠B as a positive number so both are valid solutions.

Solution 1:  ∠A = 16°        ∠B = 144°       ∠C = 20°    

Solution 2:  ∠A = 16°        ∠B = 4°       ∠C = 160°    

41)       ∠A = ?        ∠B = 75°       ∠C = ?

             a = 7           b = 30         c = ?

Use Law of Sines to find ∠A:

\dfrac{\sin A}{a}=\dfrac{\sin B}{b} \rightarrow\quad \dfrac{\sin A}{7}=\dfrac{\sin 75}{30}\rightarrow \quad \angle A=13^o\quad or \quad \angle A=167^o

If ∠A = 13°, then ∠C = 180° - (13° + 75°) = 92°

If ∠A = 167°, then ∠C = 180° - (167° + 75°) = -62°

Since ∠C cannot be negative then ∠A ≠ 167°

∠A = 13°        ∠B = 75°       ∠C = 92°       is the only valid solution.

42)      ∠A = ?         ∠B = 119°       ∠C = ?

             a = 34         b = 34           c = ?

Use Law of Sines to find ∠A:

\dfrac{\sin A}{a}=\dfrac{\sin B}{b} \rightarrow\quad \dfrac{\sin A}{34}=\dfrac{\sin 119}{34}\rightarrow \quad \angle A=61^o\quad or \quad \angle A=119^o

If ∠A = 61°, then ∠C = 180° - (61° + 119°) = 0°

If ∠A = 119°, then ∠C = 180° - (119° + 119°) = -58°

Since ∠C cannot be zero or negative then ∠A ≠ 61° and ∠A ≠ 119°

There are no valid solutions.

6 0
3 years ago
A car is traveling on a small highway and is either going 55 miles per hour or 35 miles per hour, depending on the speed limits,
denis-greek [22]

Answer:

55x + 35y = 200

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Which expression represents the greatest value?
Luden [163]

Answer:

"-2" is the same in all expressions, and it's just plus or minus. so let's ignore the "-2" and look only at the rest

+1 is the greatest then

so -2+1 is the greatest

4 0
3 years ago
Other questions:
  • What is (10/3) squared?
    10·2 answers
  • PLEASE HELP ASAP! BRAINLIEST FOR RIGHT/BEST ANSWER!
    8·1 answer
  • PLEASE HELP ME QUICKKKK!
    14·1 answer
  • Free 25 points TwT..
    7·2 answers
  • Find the value of x. Round your answer to the nearest tenth.
    5·1 answer
  • PAST DUE DATE PLEASE HELP. whats is the surface are of this figure​
    7·1 answer
  • Blue earns 5.5% commission working at Advian. If he sells $85,000 worth of goods during the quarter,
    5·2 answers
  • Gabrielle's age is three times Mikhail's age. The sum of their ages is 84. What is Mikhail's age?
    9·2 answers
  • Greg ran 12 miles a day on 18 different days last month. How many miles did he run?
    6·2 answers
  • HElppppp pleaseee......
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!