The answer to your question is supply invoice
Answer:
14 CO₂ will be released in the second turn of the cycle
Explanation:
<u>Complete question goes like this</u>, "<em>The CO2 produced in one round of the citric acid cycle does not originate in the acetyl carbons that entered that round. If acetyl-CoA is labeled with 14C at the carbonyl carbon, how many rounds of the cycle are required before 14CO2 is released?</em>"
<u>The answer to this is</u>;
- The labeled Acetyl of Acetyl-CoA becomes the terminal carbon (C4) of succinyl-CoA (which becomes succinate that is a symmetrical four carbon diprotic dicarboxylic acid from alpha-ketoglutarate).
- Succinate converts into fumarate. Fumarate converts into malate, and malate converts into oxaloacetate. Because succinate is symmetrical, the oxaloacetate can have the label at C1 or C4.
- When these condense with acetyl-CoA to begin the second round of the cycle, both of these carbons are discharged as CO2 during the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase reactions (formation of alpha-ketoglutarate and succinyl-CoA respectively).
Hence, 14 CO₂ will be released in the second turn of the cycle.
I believe it is number 3.
Hope this helps!
Answer:
How does a dichotomous key help you identify unknown specimens based on their traits?
Explanation:
see pic for edg
Answer:
I.
4) The deoxygenated blood then travels through the veins and enters the right side of the heart.
1) The blood leaves the heart through the aorta.
2) The blood travels throughout the body via the arteries to the capillaries.
3) In the capillaries, the exchange of nutrients and gases occurs. Oxygen is absorbed by the cells while carbon dioxide is released into the blood.
II.
2) Exchange of gases happens as oxygen is received by the blood and carbon dioxide is released.
1) The deoxygenated blood flows from the right side of the heart to go to the lungs.
3) The oxygenated blood then returns to the left side of the heart.
Explanation: