Wait, can you see the diagram?
The end behavior of the function y = x² is given as follows:
f(x) -> ∞ as x -> - ∞; f(x) -> ∞ as x -> - ∞.
<h3>How to identify the end behavior of a function?</h3>
The end behavior of a function is given by the limit of f(x) when x goes to both negative and positive infinity.
In this problem, the function is:
y = x².
When x goes to negative infinity, the limit is:
lim x -> - ∞ f(x) = (-∞)² = ∞.
Meaning that the function is increasing at the left corner of it's graph.
When x goes to positive infinity, the limit is:
lim x -> ∞ f(x) = (∞)² = ∞.
Meaning that the function is also increasing at the right corner of it's graph.
Thus the last option is the correct option regarding the end behavior of the function.
<h3>Missing information</h3>
We suppose that the function is y = x².
More can be learned about the end behavior of a function at brainly.com/question/24248193
#SPJ1
To find the x-intercept, substitute in
0
for
y
and solve for
x
. To find the y-intercept, substitute in
0
for
x
and solve for
y
.
x-intercept(s):
(
0
,
0
)
,
(
−
21
,
0
)
y-intercept(s):
(
0
,
0
)
Answer:
$2650
Step-by-step explanation:
= 2000 × 0.0325 × 10 = 650
= $ 650.00
27/10=2.7
Radians are the arc of circle divide by 10.