291 cm^3
The volume of a pyramid is (area of base x height) / 3
In this case the base is an equilateral triangle with side 12cm.
Using the semi perimeter formula gives
Base = sr( 18 x 6 x 6 x 6) = 62.3538...
Volume = 62.3538... x 14 / 3 = 290.9845...
= 291 to nearest whole number
You could find the base area using Pythagoras and 1/2bh or the Sine formula
If the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
<h3>What is area of the region bounded by the curve ?</h3>
An area bounded by two curves is the area under the smaller curve subtracted from the area under the larger curve. This will get you the difference, or the area between the two curves.
Area bounded by the curve
We have,
⇒ 
,
Area of the region
Sq units
Now comparing both given equation to get the intersection between points;

So,
Area bounded by the curve
![\frac{256}{3} =\[ \int_{0}^{4a} \sqrt{4ax} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%20%3D%5C%5B%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7B4ax%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= \[\sqrt{4a} \int_{0}^{4a} \sqrt{x} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%20%20%5C%5B%5Csqrt%7B4a%7D%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7Bx%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{1}{2}+1 } }{\frac{1}{2}+1 }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{3}{2} } }{\frac{3}{2} }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} *\frac{2}{3} \left[\begin{array}{ccc}(x)^{\frac{3}{2}\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%2A%5Cfrac%7B2%7D%7B3%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
On applying the limits we get;
![\frac{256}{3}= \frac{4}{3} \sqrt{a} \left[\begin{array}{ccc}(4a)^{\frac{3}{2} \end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Csqrt%7Ba%7D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%284a%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D)



⇒ 

Hence, we can say that if the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
To know more about Area bounded by the curve click here
brainly.com/question/13252576
#SPJ2
Answer:
D
Step-by-step explanation:
-9/2 = -4.5 which is the greatest number from the list