Answer:
The relationship between n and t is n*t=1200 (option d)
Step-by-step explanation:
Two quantities are inversely proportional if when multiplying (or dividing) one of them by a number, the other is divided (or multiplied) by the same number. That is, two magnitudes are inversely proportional if when one increases, the other decreases in the same proportion.
Given two variables, x and y, with an inversely proportional relationship, the product of both is always constant and equal to the coefficient of proportionality:
x*y=k
where k is the coefficient of proportionality.
This means that knowing the value of the proportionality coefficient and the value of a variable, the value of the other variable can be known through the quotient between the proportionality coefficient and the value of the known variable:

The amount of the tip "t" each waiter receives after a wedding is inversely proportional to the number of waiters "n" serving the event. The total amount for tips at a wedding was $1,200.Taking into account the aforementioned definition of inversely proportional quantities, this can be expressed by:
n*t=1200
<u><em>The relationship between n and t is n*t=1200 (option d)</em></u>
<u><em></em></u>
Answer
Expressions 4(x+5) and 5(x+4) are Equivalent
Expressions 5(2m+2) and 10m+10 are not equivalent
Step-by-step explanation:
Heres why,
4(x+5) and 5(x+4)
4 times x =4x, so multiply 4x by 5 which should give you 20.
and multiply 5 to x which would be 5x and multiply that to 4 which would be 20, they match up so they are Equivalent.
5(2m+2) and 10m+10
times 5 to 2m to get 10m and times 10m by 2 to get 20.
10m+10 = 1 which they are not equivalent
I believe the answer is C. It doesn't make sense to drop an object from -16 feet, and it doesn't make sense to have a -120 in the equation. It should be positive for it to come out right.
S (ABCD) = S (ABC) + S (ADC)
_____________________________________________
<h2>Reminder :</h2>
Area of the triangle = ½ × base × height
_____________________________________________
Thus :



There you go...
Have a great day ❤