Answer:
0.1
Step-by-step explanation:
In a problem like this the number that is more to the left is greater. As you can see 0.1 is more to the left
Exponential functions are related to logarithmic functions in that they are inverse functions. Exponential functions move quickly up towards a [y] infinity, bounded by a vertical asymptote (aka limit), whereas logarithmic functions start quick but then taper out towards an [x] infinity, bounded by a horizontal asymptote (aka limit).
If we use the natural logarithm (ln) as an example, the constant "e" is the base of ln, such that:
ln(x) = y, which is really stating that the base (assumed "e" even though not shown), that:

if we try to solve for y in this form it's nearly impossible, that's why we stick with ln(x) = y
but to find the inverse of the form:

switch the x and y, then solve for y:

So the exponential function is the inverse of the logarithmic one, f(x) = ln x
The points on the graph of the inverse variation are of the form:
(x, 8/x)
<h3>
Which ordered pairs are on the graph of the function?</h3>
An inverse variation function is written as:
y = k/x.
Here we know that k = 8.
y = 8/x
Then the points (x, y) on the graph of the function are of the form:
(x, 8/x).
So evaluating in different values of x, we can get different points on the graph:
- if x = 1, the point is (1, 8)
- if x = 2, the point is (2, 4)
- if x = 3, the point is (3, 8/3)
- if x = 4, the point is (4, 2)
And so on.
If you want to learn more about inverse variations:
brainly.com/question/6499629
#SPJ1
Answer:
![\sqrt[4]{2}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B2%7D)
Step-by-step explanation:
This was right on my test. I completely guessed so I don't really have an explanation.
ABC = 180-120=60
ACB = 180-(40+60)=80
Therefore ECD= 80 as ACB and ECD are vertically opposite angles
the solution is A as that is where the graphs intersect each other