Answer:
m=2 and n=3
Step-by-step explanation:
<u>Step</u> :-
Given ![[ 2 x^{n}y^{2} ]^m = 4 x^6 y^4](https://tex.z-dn.net/?f=%5B%202%20x%5E%7Bn%7Dy%5E%7B2%7D%20%5D%5Em%20%3D%204%20x%5E6%20y%5E4)
using algebraic formula 
now

now equating 'x' powers, we get

....(1)
now

Equating 'y' powers ,we get
2 m=4
m=2
substitute m= 2 in equation (1)
we get
2 n=6
n=3
verification:-
substitute m=2 and n=3 , we get
![[ 2 x^{n}y^{2} ]^m = 4 x^6 y^4](https://tex.z-dn.net/?f=%5B%202%20x%5E%7Bn%7Dy%5E%7B2%7D%20%5D%5Em%20%3D%204%20x%5E6%20y%5E4)


both are equating so m= 2 and n=3
Step-by-step explanation:
So 4x2+9 has no linear factors with Real coefficients. It is possible to factor it with Complex coefficients.
(27 mi/hr) x (1 hr / 60 min) = (27/60) (mi/min) = 0.45 mile/minute
Using the same kind of calculation, we can see
that the world record times for other distances
correspond to:
200 meters 23.31 mph
400 meters 20.72 mph
800 meters 17.73 mph
1000 meters 16.95 mph
1500 meters 16.29 mph
1 mile (1,609 meters) 16.13 mph
2,000 meters 15.71 mph
10,000 meters 14.18 mph
30,000 meters 12.89 mph
Marathon (42,195 meters) 13.10 mph
Except for that one figure at the end, for the marathon,
which I can't explain yet and I'll need to investigate further,
it's pretty obvious that a human being, whether running for
his life or for a gold medal, can't keep up the pace indefinitely.
I guess you are asking what is the shape of the cross section.
It will be an ellipse.
Answer:
x = ± 
Step-by-step explanation:
To find the zeros equate the polynomial to zero, that is
x² - 7 = 0 ( add 7 to both sides )
x² = 7 ( take the square root of both sides )
x = ±
Thus the exact solutions are
x = -
, x = 