Answer:
The shape of each cross-section of a 3D figure, relates to the volume because the area of the cross-section is determined by its shape and the area of this cross section is in the sum that calculates the volume of this 3D figure.
Step-by-step explanation:
An infinite sum of all the all the cross-sections of a 3D figure parallel to the base equals the volume of that 3D figure.
Answer:
Your answer is 2*17
Happy Valentine's day!!<3
Step-by-step explanation:
1*34
2*17
You want to eliminate one of the terms (x or y) in one of the equations so you can solve for the other variable. You have to multiply by the opposite number of the coefficient to be able to eliminate the term in the other equation. If the x coefficient is 2, then you have to multiply the entire other equation by -2. If the y coefficient is -5, then you have to multiply the entire other equation by 5.
10)
-4x + 9y= 9
x - 3y= -6
STEP 1:
multiply the bottom equation by 4
4(x- 3y)= 4(-6)
4x - 12y= -24
STEP 2:
add the top equation and the equation from step 2
-4x + 9y= 9
4x - 12y= -24
the x term cancels out
-3y= 15
divide both sides by -3
y= -5
STEP 2:
substitute the y value in either original equation to solve for x
x - 3y= -6
x - 3(-5)= -6
x + 15= -6
subtract 15 from both sides
x= -21
ANSWER: x= -21; y= -5
____________________
12)
-7x + y= -19
-2x + 3y= -19
STEP 1:
multiply the top equation by -3 to eliminate the y term and to solve for x
-3(-7x + y)= -3(-19)
21x - 3y= 57
STEP 2:
add the bottom equation and the equation from step 2 to solve for x
-2x + 3y= -19
21x - 3y= 57
the y term cancels out
19x= 38
divide both sides by 19
x= 2
STEP 3:
substitute the x value in step 2 to solve for y; you can use either original equation
-7x + y= -19
-7(2) + y= -19
-14 + y= -19
add 14 to both sides
y= -5
ANSWER: x= 2; y=-5
Hope this helps! :)
It should be d which is 45
This theorem says that the exterior angle is equal to the sum of its remote interior angles. In other words, 140 = 2x + x + 2. 140 = 3x + 2 and 138 = 3x. Therefore, x = 46. Multiply it by 2 to get angle B is 92 degrees.