1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
12

A middle school needs buses to

Mathematics
2 answers:
Tresset [83]3 years ago
7 0

Answer:

13 buses ml hope that helps

cricket20 [7]3 years ago
4 0

Answer:

13 buses

Step-by-step explanation:

There are 579 students and each bus carries 48 students so:

579 ÷ 48 = 12.1

Now you could say that only 12 buses are needed but there would be an extra student remaining so you need 13 buses.

You might be interested in
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Please helpp!! I need help placing and label the following numbers on the number line
Alchen [17]
-1 goes on the number that is -1.
1.75 goes on the 3rd line in between 1 and 2.
-2 goes on the number -2.
-2 1/2 on the 2nd line after 2.
-5/2 or -2 1/2 goes on the 2 line before -2.
And 9/4 or 2 1/4 goes on goes on the 1st line after 2.

Hope this helps!! :)
3 0
3 years ago
Solve compound inequality x ≥ -3 or x &lt; 3
Romashka-Z-Leto [24]

Answer:

Step-by-step explanation:

Compound Inequalities is a method to find the variable value for the given compound inequalities. The two inequalities would be joined by the word 'and' or 'or'. It is presented in a number line. When the arrow points away from each other in the number line, then the inequalities are joined by 'and', if arrow points on same direction ...

5 0
3 years ago
The perimeter of a particular square and the circumference of a particular circle are equal. What is the ratio of the area of th
Tasya [4]

Ratio of the area of the square to the area of the circle is \frac{\pi}{4} : 1

In terms of fraction \frac{\pi}{4}

<em><u>Solution:</u></em>

Given that perimeter of a particular square and the circumference of a particular circle are equal

To find:  ratio of the area of the square to the area of the circle

Let the side of square be "a" and radius of circle be "r"

<em><u>The perimeter of square is given as:</u></em>

Perimeter of square = 4a

<em><u>The circumference of circle is given as:</u></em>

Circumference of circle = 2πr

From given,

perimeter of a particular square and the circumference of a particular circle are equal

perimeter of a particular square = circumference of a particular circle

4a = 2 \pi r\\\\a = \frac{\pi r}{2}

We need to find the ratio of the area of the square to the area of the circle.

We know that,

\text{ Area of the square }= a^2\\\\\text{ Area of the circle }= \pi r^2

Ratio of area of square to area of circle = a^2 : \pi r^2

Substituting the value of a = \frac{\pi r}{2} in above ratio,

Ratio of area of square to area of circle = (\frac{\pi r}{2})^2 : \pi r^2

On reducing to lowest terms we get,

⇒ \frac{\pi^2 r^2}{4} : \pi r^2 = \frac{\pi}{4} : 1

In terms of fraction we get,

\frac{\pi}{4} : 1 = \frac{\frac{\pi}{4}}{1} = \frac{\pi}{4}

Thus ratio of the area of the square to the area of the circle is \frac{\pi}{4} : 1

3 0
4 years ago
Please simplify will give brainliyest
dimulka [17.4K]

   

\displaystyle\bf\\-\sqrt{m^4n^7}=\\\\=-\sqrt{m^{2\times2}\times n^{3\times2+1}}=\\\\=-\sqrt{m^{2\times2}\times n^{3\times2}\times n}}=\\\\=-\sqrt{\Big(m^2\Big)^2\times \Big(n^3\Big)^2\times n}}=\\\\=-\sqrt{\Big(m^2\times n^3\Big)^2\times n}}=\\\\=\boxed{\bf-m^2n^3\sqrt{n}}

 

4 0
4 years ago
Other questions:
  • What is the slope of these points: (0,14) and (2,10)? Explain nicely please.
    11·2 answers
  • Geometry help please
    10·1 answer
  • The following data points represent the volume
    15·2 answers
  • Solve the equation and enter the value of x below. -1(4 + x) = 6​
    9·1 answer
  • Find the mode of the following data. 56,34,45,65,67,56,45,36,92,73,92,45,56
    5·2 answers
  • -6(2y + 3) + 6 = 24.
    9·1 answer
  • Find the slope on the graph
    9·1 answer
  • Which functions graph is a translation of the graph of f(x)=x shifted 5 units to the right
    14·1 answer
  • Write the expression without radicals, using only positive exponents.
    15·1 answer
  • Marcus bought a varsity jacket. The total cost, including an 8% sales tax, was $86.40. What was the price p of the jacket?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!