It’s A
As it says in the answer, you usually add / subtract the exponents when needed.
Answer:
AB = 8/ cos 60
Step-by-step explanation:
We want to find the hypotenuse AB
Since we have a right triangle
cos theta = adj/ hyp
cos 60 = 8/ AB
AB cos 60 = 8
AB = 8/ cos 60
Of the four x-coordinates to choose only 1/√(11) belongs can belong to the unit circle.
The other three x-coordinates are greater than 1, then they are out of the unit circle.
The unit circle formula is x^2 +y^2 = 1
Then to find the y-coordinate given the x-coordinate you can solve for y from that formula:
y^2 = 1 - x^2
y = (+/-)√(1-x^2)
Substitute the value of x
y = (+/-)√{1 - [1/√(11)]^2} = (+/-) √{(1 - 1/11} =(+/-) √ {(11 -1)/11 =(+/-)√(10/11) ≈ +/- 0.95
<h3>Answers:</h3>
- (a) It is <u>never</u> one-to-one
- (b) It is <u>never</u> onto
=========================================================
Explanation:
The graph of any constant function is a horizontal flat line. The output is the same regardless of whatever input you select. Recall that a one-to-one function must pass the horizontal line test. Horizontal lines themselves fail this test. So this is sufficient to show we don't have a one-to-one function here.
Put another way: Let f(x) be a constant function. Let's say its output is 5. So f(x) = 5 no matter what you pick for x. We can then show that f(a) = f(b) = 5 where a,b are different values. This criteria is enough to show that f(x) is not one-to-one. A one-to-one function must have f(a) = f(b) lead directly to a = b. We cannot have a,b as different values.
----------------------------
The term "onto" in math, specifically when it concerns functions, refers to the idea of the entire range being accessible. If the range is the set of all real numbers, then we consider the function be onto. There's a bit more nuance, but this is the general idea.
With constant functions, we can only reach one output value (in that example above, it was the output 5). We fall very short of the goal of reaching all real numbers in the range. Therefore, this constant function and any constant function can never be onto.