Answer:
y = 300
x = 200
Step-by-step explanation:
Esta pregunta parece incompleta, parece que acá tenemos un sistema de ecuaciones:
x + y = 500
10*x + 20*y = 8000
Estas ecuaciones tienen que resolverse en conjunto, y de acá sacaremos un par de puntos (x, y) que son solución para ambas ecuaciones.
El primer paso para resolver esto es aislar una variable en una de las ecuaciones, en este caso podemos aislar x en la primera ecuación y así obtener:
x = 500 - y.
Ahora podemos reemplazar eso en la segunda ecuación y obtener:
10*(500 - y) + 20*y = 8000.
Ahora resolvemos esto para y.
5000 - 10*y + 20*y = 8000
10*y = 8000 - 5000 = 3000
y = 3000/10 = 300.
Y sabíamos que:
x = 500 - y = 500 - 300 = 200
Entonces la solución es:
y = 300
x = 200
Answer:
it would be 1 million, ( 1,000,000 )
Step-by-step explanation:
1.) look to the right of the nine , (7)
2.) 7 is greater than five therefore rounding it up to 1,000,000
Answer:
9 or 3.8x10^-6
Step-by-step explanation:
By flipping a coin you'd look at how many times a head could appear (1/2) and multiply that by the 18 times.
Another explanation:
I'm not sure on this but would you raise 1/2 to the 18th power?
A system of equations for this would be
19x + 11y = 273
and
12x + 17y = 283.
X is the amount of minutes to solve one long division problem and y is the amount of minutes to solve a graphing problem.
How To Solve This System of Equations.
Multiply both by 17 and 11 respectively for them to have the greatest common factor for y. So now both equations are:
323x + 187y= 4641
132x + 187y= 3113.
Subtract both equations and you have left:
191x = 1528.
Divide both sides by 191 and you find x.
X = 8.
Answer
It takes Sally 8 minutes to do one Long Division Problem.
Hope this helped. ;)
Angle a is directly opposite from a 40 degree angle, so a=40. Then we can find b since the sum of the angles of all triangles is 180 and there is a right angle in there along with angle a:


Last, to find c we just notice that it is supplementary with an angle of measure 65, so:


So our angles are a=40, b=50, c=115.