1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
7

-10x+2=14x then 16x=

Mathematics
1 answer:
Ksivusya [100]3 years ago
3 0

Answer:

4/3

Step-by-step explanation:

-10x + 2 = 14x

24x = 2

x = 2/24 or 1/12

16 x 1/12 = 16/12 or 4/3

You might be interested in
In a road-paving process, asphalt mix is delivered to the hopper of the paver by trucks that haul the material from the batching
Advocard [28]

Answer:

a) Probability that haul time will be at least 10 min = P(X ≥ 10) ≈ P(X > 10) = 0.0455

b) Probability that haul time be exceed 15 min = P(X > 15) = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10) = 0.6460

d) The value of c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)

c = 2.12

e) If four haul times are independently selected, the probability that at least one of them exceeds 10 min = 0.1700

Step-by-step explanation:

This is a normal distribution problem with

Mean = μ = 8.46 min

Standard deviation = σ = 0.913 min

a) Probability that haul time will be at least 10 min = P(X ≥ 10)

We first normalize/standardize 10 minutes

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

To determine the required probability

P(X ≥ 10) = P(z ≥ 1.69)

We'll use data from the normal distribution table for these probabilities

P(X ≥ 10) = P(z ≥ 1.69) = 1 - (z < 1.69)

= 1 - 0.95449 = 0.04551

The probability that the haul time will exceed 10 min is approximately the same as the probability that the haul time will be at least 10 mins = 0.0455

b) Probability that haul time will exceed 15 min = P(X > 15)

We first normalize 15 minutes.

z = (x - μ)/σ = (15 - 8.46)/0.913 = 7.16

To determine the required probability

P(X > 15) = P(z > 7.16)

We'll use data from the normal distribution table for these probabilities

P(X > 15) = P(z > 7.16) = 1 - (z ≤ 7.16)

= 1 - 1.000 = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10)

We normalize or standardize 8 and 10 minutes

For 8 minutes

z = (x - μ)/σ = (8 - 8.46)/0.913 = -0.50

For 10 minutes

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

The required probability

P(8 < X < 10) = P(-0.50 < z < 1.69)

We'll use data from the normal distribution table for these probabilities

P(8 < X < 10) = P(-0.50 < z < 1.69)

= P(z < 1.69) - P(z < -0.50)

= 0.95449 - 0.30854

= 0.64595 = 0.6460 to 4 d.p.

d) What value c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)?

98% of the haul times in the middle of the distribution will have a lower limit greater than only the bottom 1% of the distribution and the upper limit will be lesser than the top 1% of the distribution but greater than 99% of fhe distribution.

Let the lower limit be x'

Let the upper limit be x"

P(x' < X < x") = 0.98

P(X < x') = 0.01

P(X < x") = 0.99

Let the corresponding z-scores for the lower and upper limit be z' and z"

P(X < x') = P(z < z') = 0.01

P(X < x") = P(z < z") = 0.99

Using the normal distribution tables

z' = -2.326

z" = 2.326

z' = (x' - μ)/σ

-2.326 = (x' - 8.46)/0.913

x' = (-2.326×0.913) + 8.46 = -2.123638 + 8.46 = 6.336362 = 6.34

z" = (x" - μ)/σ

2.326 = (x" - 8.46)/0.913

x" = (2.326×0.913) + 8.46 = 2.123638 + 8.46 = 10.583638 = 10.58

Therefore, P(6.34 < X < 10.58) = 98%

8.46 - c = 6.34

8.46 + c = 10.58

c = 2.12

e) If four haul times are independently selected, what is the probability that at least one of them exceeds 10 min?

This is a binomial distribution problem because:

- A binomial experiment is one in which the probability of success doesn't change with every run or number of trials. (4 haul times are independently selected)

- It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure. (Only 4 haul times are selected)

- The outcome of each trial/run of a binomial experiment is independent of one another. (The probability that each haul time exceeds 10 minutes = 0.0455)

Probability that at least one of them exceeds 10 mins = P(X ≥ 1)

= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

= 1 - P(X = 0)

Binomial distribution function is represented by

P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ

n = total number of sample spaces = 4 haul times are independently selected

x = Number of successes required = 0

p = probability of success = probability that each haul time exceeds 10 minutes = 0.0455

q = probability of failure = probability that each haul time does NOT exceeds 10 minutes = 1 - p = 1 - 0.0455 = 0.9545

P(X = 0) = ⁴C₀ (0.0455)⁰ (0.9545)⁴⁻⁰ = 0.83004900044

P(X ≥ 1) = 1 - P(X = 0)

= 1 - 0.83004900044 = 0.16995099956 = 0.1700

Hope this Helps!!!

7 0
3 years ago
A runner ran 20 miles in 150 minutes. If she runs at that speed, how long would it take her to run 6 miles? How fast is she runn
Nataly_w [17]
First you do 150 divided by 20, which equals 7.5, so then you would do 7.5 times 6 and that equals 45 minutes. Hope that helped!
4 0
3 years ago
Please help me question is in the picture
tekilochka [14]

Answer:

172.70 sq. ft.

Step-by-step explanation:

The surface area of a circular cone is

SA = \pi r^{2} + \pi rl       r = radius of base         l = slant height

r = 4.4    and     l = 8.1

SA = 3.14 (4.4^{2}) + 3.14(4.4)(8.1)\\

SA = 3.14(19.36) + 111.9096

     = 60.7904 + 111.9096

     = 172.70 sq. ft.

8 0
2 years ago
What is the value of k ?
seropon [69]
K=10
Here is the equation

180-115=65

(4K+5)+(6k+10)+65=180
8 0
3 years ago
Please help me :( I would appreciate it
blagie [28]

d or c________________________

Step-by-step explanation:

vvv.

8 0
3 years ago
Other questions:
  • Determine the largest integer value of a for which f(x)= ax^2+9x+5 has 2 distinct, real zeros (please show work)
    11·1 answer
  • 4 pieces of wood each 11 and a half inches long are required to build a cabinet. If all four pieces are cut from one board and 1
    12·1 answer
  • What is the value of x in sin 29° = cosx?<br> 29 degrees<br> 61 degrees<br> 1 degree<br> 151 degrees
    9·1 answer
  • What is the value of b?<br><br><br> Enter your answer in the box.<br><br> b =
    14·2 answers
  • If Kayla purchased 17 ounces of coffee, what would be the cost?
    13·1 answer
  • Find the distance between the two points rounding to the nearest tenth (if necessary). (-6,7) and (-3,0)​
    15·1 answer
  • Last one for the day! Your welcome I said your welcome cmon now say thank you, Bru say Thank you rn, cmon now ! "thank you" Aww
    5·2 answers
  • Which Venn diagram correctly describes the relationship between whole numbers and integers?​
    7·1 answer
  • The difference is<br> Part B 287<br> Find the product of the expressions.
    8·1 answer
  • Rubin has 6 rolls of pennies containing 50 coins each, 5 rolls of nickels
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!