20/110 because there's 20 kids in her third period but 110 overall hope I helped in time
Look carefully at the first pair: (−3, 9), (−3, −5) Note that x does not change, tho' y does. This is how we recognize a vertical line (whose slope is undefined). The equation of this vertical line is x = -3.
Looking at the second pair: from (3,4) to (5,6), x increases by 2 and y by 2; thus, the slope is m = rise/run = 2/2 = 1.
Third pair: as was the case with the first pair, x does not change here, and thus the equation of this (vertical) line is x=0 (which is the y-axis). The slope is undefined.
48 divided by 12 = 7
Because 12x7=48
Hope this helped!
Using the binomial distribution, it is found that there is a:
a) 0.9298 = 92.98% probability that at least 8 of them passed.
b) 0.0001 = 0.01% probability that fewer than 5 passed.
For each student, there are only two possible outcomes, either they passed, or they did not pass. The probability of a student passing is independent of any other student, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial probability distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 90% of the students passed, hence
.
- The professor randomly selected 10 exams, hence
.
Item a:
The probability is:

In which:




Then:

0.9298 = 92.98% probability that at least 8 of them passed.
Item b:
The probability is:

Using the binomial formula, as in item a, to find each probability, then adding them, it is found that:

Hence:
0.0001 = 0.01% probability that fewer than 5 passed.
You can learn more about the the binomial distribution at brainly.com/question/24863377
The answer is II and III, which is the last choice from above. This is because the symbol "less than (or equal to)" indicated a conjunction, which means we have to take into account that the absolute value can be less than or equal to 15, and greater than or equal to -15. This solution set falls in between the two values, hence, the conjunction.