The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
900=300(1+0.058)^t divide each side by 300
3=1.059^t
Log(3)=t*log(1.058)
T=log(3)/log(1.058)
T==19.5 years
Answer:
Maximization and Minimization Problems on Feasible Regions
Step-by-step explanation:
go to that yt vid
Given:
Profit : 15,000,000
Cost: 30 per basketball hoop
production: 1 million hoops
price: 50 - 5x²
Profit = Sales - Cost
15,000,000 = sales - 30(1,000,000)
15,000,000 + 30,000,000 = sales
45,000,000 = sales
45,000,000 / 1,000,000 = 45 sales price.