Answer:
the sqare root of 19.9 is 4.46094160464
800(1+7)∧4
it will be $1048.63
Answer:
Rewrite the function as an equation.
y
=
5
x
−
4
Use the slope-intercept form to find the slope and y-intercept.
Tap for fewer steps...
The slope-intercept form is
y
=
m
x
+
b
, where
m
is the slope and
b
is the y-intercept.
y
=
m
x
+
b
Find the values of
m
and
b
using the form
y
=
m
x
+
b
.
m
=
5
b
=
−
4
The slope of the line is the value of
m
, and the y-intercept is the value of
b
.
Slope:
5
y-intercept:
−
4
Any line can be graphed using two points. Select two
x
values, and plug them into the equation to find the corresponding
y
values.
Tap for fewer steps...
Choose
1
to substitute in for
x
to find the ordered pair.
Tap for fewer steps...
Replace the variable
x
with
1
in the expression.
f
(
1
)
=
5
(
1
)
−
4
Simplify the result.
Tap for more steps...
1
The
y
value at
x
=
1
is
1
.
y
=
1
Choose
0
to substitute in for
x
to find the ordered pair.
Tap for fewer steps...
Replace the variable
x
with
0
in the expression.
f
(
0
)
=
5
(
0
)
−
4
Simplify the result.
Tap for more steps...
−
4
The
y
value at
x
=
0
is
−
4
.
y
=
−
4
Create a table of the
x
and
y
values.
x
y
0
−
4
1
1
Graph the line using the slope and the y-intercept, or the points.
Slope:
5
y-intercept:
−
4
x
y
0
−
4
1
1
Step-by-step explanation:
Answer:
(5, - 4 )
Step-by-step explanation:
Given the 2 equations
2x + 3y = - 2 → (1)
3x - y = 19 → (2)
Multiplying (2) by 3 and adding to (1) will eliminate the y- term
9x - 3y = 57 → (3)
Add (1) and (3) term by term to eliminate y
(2x + 9x) + (3y - 3y) = (- 2 + 57), that is
11x = 55 ( divide both sides by 5 )
x = 5
Substitute x = 5 into either of the 2 equations and solve for y
Substituting into (1)
2(5) + 3y = - 2
10 + 3y = - 2 ( subtract 10 from both sides )
3y = - 12 ( divide both sides by 3 )
y = - 4
Solution is (5, - 4 )
Answer:
El perímetro de la región impresa es 72 cm y su área es 288 cm².
Step-by-step explanation:
1. Tenemos el perímetro de la hoja de papel:
P₁ = 96 cm = 2l₁ + 2a₁ (1)
Como sabemos el margen superior, inferior, izquierdo y derecho podemos encontrar la relación entre el largo y ancho del rectángulo interno (región impresa) con el largo (l) y ancho (a) del rectángulo externo (hoja de papel):
(2)
(3)
El perímetro del rectángulo interno es:
(4)
Introduciendo la ecuación (2) y (3) en (4):
Por lo tanto el perímetro del rectángulo interno (región impresa) es 72 cm.
2. Ahora para encontrar el área rectángulo interno debemos encontrar el largo y ancho del mismo, sabiendo que:
(5)
Introduciendo (5) en (4):



Entonces el área es:

Por lo tanto el área del rectágulo interno (región impresa) es 288 cm².
Espero que te sea de utilidad!