1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
11

Math homework plz help​

Mathematics
1 answer:
Aliun [14]3 years ago
6 0
89 years old because 2020 subtracted by 1931 is 89.
You might be interested in
A sample of 64 was taken from a population, with the mean of the sample being 119 and the standard deviation of the sample being
Fofino [41]
We have the sample size, sample mean and the sample standard deviation. Since the population standard deviation is not know, we will use t-distribution to find the confidence interval.

The critical t value for 95% confidence interval and 63 degrees of freedom is 1.998.

The 95% confidence for the population mean will be:

(119-1.998 *\frac{16}{ \sqrt{64} } ,119+1.998 *\frac{16}{ \sqrt{64} }) \\  \\ 
=(115.004, 122.996) \\ \\=(115,123)

Thus, the 95% confidence interval for the population mean will be (115,123)

So, option A is the correct answer
6 0
3 years ago
The quoientiant of the difference of a number and 24 divided by 8 is the same as the number divided by 6
Sergeu [11.5K]
x-the\ number\\\\\dfrac{x-24}{8}=\dfrac{x}{6}\ \ \ \ |multiply\ both\ sides\ by\ 24\\\\3(x-24)=4x\\\\3x-72=4x\ \ \ \ |subtract\ 3x\ from\ both\ sides\\\\\boxed{x=-72}
5 0
3 years ago
Help please it's number lines​
skelet666 [1.2K]

sin(θ+β)=−

5

7

−4

15

2

Step-by-step explanation:

step 1

Find the sin(\theta)sin(θ)

we know that

Applying the trigonometric identity

sin^2(\theta)+ cos^2(\theta)=1sin

2

(θ)+cos

2

(θ)=1

we have

cos(\theta)=-\frac{\sqrt{2}}{3}cos(θ)=−

3

2

substitute

sin^2(\theta)+ (-\frac{\sqrt{2}}{3})^2=1sin

2

(θ)+(−

3

2

)

2

=1

sin^2(\theta)+ \frac{2}{9}=1sin

2

(θ)+

9

2

=1

sin^2(\theta)=1- \frac{2}{9}sin

2

(θ)=1−

9

2

sin^2(\theta)= \frac{7}{9}sin

2

(θ)=

9

7

sin(\theta)=\pm\frac{\sqrt{7}}{3}sin(θ)=±

3

7

Remember that

π≤θ≤3π/2

so

Angle θ belong to the III Quadrant

That means ----> The sin(θ) is negative

sin(\theta)=-\frac{\sqrt{7}}{3}sin(θ)=−

3

7

step 2

Find the sec(β)

Applying the trigonometric identity

tan^2(\beta)+1= sec^2(\beta)tan

2

(β)+1=sec

2

(β)

we have

tan(\beta)=\frac{4}{3}tan(β)=

3

4

substitute

(\frac{4}{3})^2+1= sec^2(\beta)(

3

4

)

2

+1=sec

2

(β)

\frac{16}{9}+1= sec^2(\beta)

9

16

+1=sec

2

(β)

sec^2(\beta)=\frac{25}{9}sec

2

(β)=

9

25

sec(\beta)=\pm\frac{5}{3}sec(β)=±

3

5

we know

0≤β≤π/2 ----> II Quadrant

so

sec(β), sin(β) and cos(β) are positive

sec(\beta)=\frac{5}{3}sec(β)=

3

5

Remember that

sec(\beta)=\frac{1}{cos(\beta)}sec(β)=

cos(β)

1

therefore

cos(\beta)=\frac{3}{5}cos(β)=

5

3

step 3

Find the sin(β)

we know that

tan(\beta)=\frac{sin(\beta)}{cos(\beta)}tan(β)=

cos(β)

sin(β)

we have

tan(\beta)=\frac{4}{3}tan(β)=

3

4

cos(\beta)=\frac{3}{5}cos(β)=

5

3

substitute

(4/3)=\frac{sin(\beta)}{(3/5)}(4/3)=

(3/5)

sin(β)

therefore

sin(\beta)=\frac{4}{5}sin(β)=

5

4

step 4

Find sin(θ+β)

we know that

sin(A + B) = sin A cos B + cos A sin Bsin(A+B)=sinAcosB+cosAsinB

so

In this problem

sin(\theta + \beta) = sin(\theta)cos(\beta)+ cos(\theta)sin (\beta)sin(θ+β)=sin(θ)cos(β)+cos(θ)sin(β)

we have

sin(\theta)=-\frac{\sqrt{7}}{3}sin(θ)=−

3

7

cos(\theta)=-\frac{\sqrt{2}}{3}cos(θ)=−

3

2

sin(\beta)=\frac{4}{5}sin(β)=

5

4

cos(\beta)=\frac{3}{5}cos(β)=

5

3

substitute the given values in the formula

sin(\theta + \beta) = (-\frac{\sqrt{7}}{3})(\frac{3}{5})+ (-\frac{\sqrt{2}}{3})(\frac{4}{5})sin(θ+β)=(−

3

7

)(

5

3

)+(−

3

2

)(

5

4

)

sin(\theta + \beta) = (-3\frac{\sqrt{7}}{15})+ (-4\frac{\sqrt{2}}{15})sin(θ+β)=(−3

15

7

)+(−4

15

2

)

sin(\theta + \beta) = -\frac{\sqrt{7}}{5}-4\frac{\sqrt{2}}{15}sin(θ+β)=−

5

7

−4

15

2

Step-by-step explanation:

i hope it helps to you

5 0
3 years ago
The diameter of a sphere is ​
Travka [436]

Answer: The maximum distance between two antipodal points on the surface of the sphere.

5 0
3 years ago
Сумма пяти последовательных натуральных нечетных чисел равна 9975 Найдите эти числа
iren2701 [21]
Yeah is there a language filter on here ? orr
6 0
3 years ago
Other questions:
  • Find the mean (average) 79% 85%,60%, 90%
    15·2 answers
  • Which is a solution to (x - 2)(x + 10) = 13?<br> O x = 3<br> Ox=8<br> x = 10<br> x = 11
    10·1 answer
  • Simplify the expression (-2+4i)-(2+7i) I am not great at these--
    9·2 answers
  • How many 84s are in 672
    7·2 answers
  • The following represents the probability distribution for the daily demand of microcomputers at a local store. Demand Probabilit
    7·1 answer
  • What is 5 1/3 as a decimal
    5·2 answers
  • I=$54, P=$900, t.= 18 months
    6·2 answers
  • PLS HELP MEEEEEE
    13·2 answers
  • How many ounces are in 70 pounds? (1 pound= 16 ounces)<br><br> *answer must include units!!*
    12·2 answers
  • Help me please! I don’t quite get this <br> 10 pts!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!