1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
3 years ago
10

A color printer prints 13 pages in 8 minutes How many pages does it print per minute

Mathematics
1 answer:
Nezavi [6.7K]3 years ago
4 0

Answer: 13/8 or 1.625

Step-by-step explanation:

You might be interested in
I need help with geometry
HACTEHA [7]

Answer:

Segment QR is the shortest

6 0
2 years ago
Read 2 more answers
A machine produces defective parts with three different probabilities depending on its state of repair. If the machine is in goo
Zina [86]

Answer:

Step-by-step explanation:

Given that a machine produces defective parts with three different probabilities depending on its state of repair.

condition             Good order         Wearing down               Needs main   Total

Prob                       0.8                            0.1                                   0.1              1

Defective               0.02                          0.1                                   0.3

Joint prob              0.016                         0.01                                0.03        0.056

a) 0.016

b) total = 0.056

c) If not defective from needs maintenance

Prob for not defective = 0.8*0.98+0.1*0.9+0.1*0.7\\=0.784+0.09+0.07\\=0.944

From machine that needs maintenance = 0.07

So reqd prob = \frac{0.07}{0.944} \\=0.0741

6 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
A cube has a volume of 1331 cm3. What is the area of one of its faces.
Vinvika [58]
Area = 726 cm squared
3 0
3 years ago
Can someone help me and tell me how I got it wrong?<br>​
kramer

Answer:

You put i at the end.

Step-by-step explanation:

The correct answer is u^5 remove the i.

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the area of the figure
    5·1 answer
  • Math problem will give a lot of my points and brainliest for correct.
    15·1 answer
  • Just need a bit of help really quick on 2 questions, I would very much appreciate it.
    6·2 answers
  • -13=m-7 how can i get my answer
    10·2 answers
  • The front yard of a house is 80 feet long and 50 feet wide. The backyard of the house is 50 feet long and 40 feet wide. What is
    14·1 answer
  • Blake's car has traveled 100 miles in 1 1/4 hours. How many mules per hour in Blake's car traveling?
    9·1 answer
  • Perform the following multiplication. 4.7314 × 10 = 47.314 0.47314 473.14 4,731.4
    14·1 answer
  • Solve for a missing factor,
    10·2 answers
  • A square with a perimeter of 14 in. is reduced to a square with a perimeter of 7 in. What is the scale factor of this reduction?
    9·1 answer
  • 16 is what percent less than 489?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!