Answer:
<h2><em><u>Pythagorean </u></em><em><u>theorem </u></em><em><u>reads </u></em><em><u>as:</u></em></h2>
<h2><em><u>H²</u></em><em><u>=</u></em><em><u>P²</u></em><em><u>+</u></em><em><u>B</u></em><em><u>²</u></em></h2>
<h2><em><u>in </u></em><em><u>which </u></em><em><u>p </u></em><em><u>reads </u></em><em><u>as </u></em><em><u>perpendicular </u></em><em><u>so </u></em></h2>
<h2><em><u>P²</u></em><em><u>=</u></em><em><u>H²</u></em><em><u>-</u></em><em><u>B²</u></em></h2>
<em><u>
</u></em>
Hayden had the membership for one month and took 6 classes.
First, plug in the given point into y=mx +b to find b (the y-intercept of the line). Use the same slope (m) in the equation since parallel lines have the same slope (3 in this case).
-1 = 3(4) +b
-1 = 12 + b Subtract 12 to both sides.
-13 = b
Now, put your m and b into y=mx+b.
The final answer/equation of your line is:
y=3x -13
Answer:
You really just moved -6 steps or 6 steps backwards
Step-by-step explanation: