1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
3 years ago
10

Help! Will give brainliest and 10 points!

Mathematics
1 answer:
krok68 [10]3 years ago
3 0

Answer:

-3a^2 - 6a - 10

Step-by-step explanation:

You are subtracting 10a^2 + 6a + 2 from 7a^2 - 8.

You can set it up like the problem shows you, and subtract each term in the second line form a like term in the top line.

         7a^2            -8

(-)      10a^2 + 6a + 2

-----------------------------

        -3a^2 - 6a - 10

Answer:  -3a^2 - 6a - 10

You might be interested in
4x-5y=-15 <br> 7x-2y=21 <br> X=<br> Y=
Helen [10]

Answer:

The values of x and y to the given equations are x=5 and y=7

Step-by-step explanation:

Given equations are 4x-5y=-15\hfill (1)

7x-2y=21\hfill (2)

To solve the given equations by elimination method :

Multiply the equation (1) into 2 we get

8x-10y=-30\hfill (3)

Multiply the equation (2) into 5 we get

35x-10y=105\hfill (4)

Now subtracting the equations (3) and (4) we get

8x-10y=-30

35x-10y=105

_________________

-27x=-135

x=\frac{135}{27}

Therefore x=5

Now substitute the value of x=5 in equation (1) we get

4(5)-5y=-15

20-5y=-15

-5y=-15-20

-5y=-35

y=\frac{35}{5}

Therefore y=7

The values are x=5 and y=7

4 0
3 years ago
I need help. Also need the answer in step by step form
Nutka1998 [239]

Answer:

x=2

Step-by-step explanation:

f(x)=-3x+1, f(x)=-5

-5=-3x+1, 3x=6, x=2. Answered by gauthmath

7 0
3 years ago
Read 2 more answers
Janna has 34 pennies. Mandy has 48 pennies. Mandy says they have 72
krok68 [10]

Answer:

Mandy should add the tens before she adds the ones.

Step-by-step explanation:

There are no other good answers and the correct answer is 82 pennies.

3 0
3 years ago
Read 2 more answers
The system shown has _____ solution(s).
loris [4]
This system has one solution. Here are my steps to solving this problem:

y=x+1

2(x+1) - x = 2

2x +2 - x = 2

2x - x + 2 = 2

x + 2 = 2
    - 2  - 2
----------------
x = 0

y = 0 + 1
y = 1 

I hope this helps you!

5 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Other questions:
  • Jerry has taken a random sample of students and determined the number of electives that each student in his sample took last yea
    14·1 answer
  • How many solutions are there to this equation 7x-3(x-1)=2(2x+3)​
    7·1 answer
  • HELPPPPPPPPPP Add &amp; subtract matrices ..... <br><br> PLZ GIVE THE ANSWER .. THANKSSSSS .
    8·1 answer
  • Cole walked 2 1/2 kilometers on Monday. Isabella walked twice as many kilometers as coke. How many meters did cole and Isabella
    11·1 answer
  • Please answer correctly !!!!!!! Will mark brainliest !!!!!!!!!!
    14·1 answer
  • Hugo plans to buy packs of baseball cards until he gets the card of his favorite player, but he only has enough money to buy at
    6·1 answer
  • Solve for n: 49n + 986 = -43.
    12·1 answer
  • Which of these is the algebraic expression for "5 times the sum of 2 and y?" 052+ y O2 +5. O2(5 + y) O 5(2 + y)​
    12·1 answer
  • How can you tell whether a graph shows discrete domain or continuous domain?
    15·2 answers
  • Find the equation of a line passing through (-2/3, 5) that is parallel to 4x-2y=6. Express your answer in point-slope form.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!