1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
2 years ago
5

What is the value of x =》 6x + 6 = 42​

Mathematics
2 answers:
otez555 [7]2 years ago
6 0

Answer:

x = 6

Step-by-step explanation:

6x + 6 = 42

6x = 42 - 6

6x = 36

x = 36 / 6

x = 6

hope it helps :)

Natalija [7]2 years ago
5 0

Answer:

<em>6</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em> </em><em>=</em><em> </em><em>4</em><em>2</em>

<em>6</em><em>x</em><em> </em><em>=</em><em> </em><em> </em><em>4</em><em>2</em><em>-</em><em> </em><em>6</em>

<em>6</em><em>x</em><em> </em><em>=</em><em> </em><em> </em><em>3</em><em>6</em><em> </em>

<em>x=</em><em> </em><em>3</em><em>6</em><em> </em><em>/</em><em>6</em><em> </em>

<em>x=</em><em> </em><em> </em><em>6</em>

<em>hope </em><em>it </em><em>helps</em>

You might be interested in
Gabriel buys a $2,000 fixed-rate bond with a 4% coupon and five years to maturity. How much interest will he earn over the life
AysviL [449]

correct answer A


Step-by-step explanation: $400 would be your answer

8 0
3 years ago
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
What is f×e where e={1,2,13} and f={44,8,2}?
alexandr1967 [171]

Answer:

f\times e=\{(1,44),(1,8),(1,2),(2,44),(2,8),(2,2),(13,44),(13,8),(13,2)\}

Step-by-step explanation:

The Cartesian Product of two sets is all <u>pairs</u> in which the first element of each pair comes from the first set, and the second element comes from the second set.

f\times e=\{(1,44),(1,8),(1,2),(2,44),(2,8),(2,2),(13,44),(13,8),(13,2)\}

This was built using 1 from the first set paired with each number in the second set, then using 2 from the first set paired with each number in the second set, then 13 from the first set paired with each number in the second set.

Bad English!  Good solution!

5 0
3 years ago
consider the point A= (1,2) and the line B, given by the equation y=3x-5. write an equation in slope intercept of the line passi
Gre4nikov [31]

Answer:

y = 3x - 1

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = 3x - 5 ← is in slope- intercept form

with slope m = 3

Parallel lines have equal slopes, thus

y = 3x + c ← is the partial equation of the parallel line

To find c substitute (1, 2) into the partial equation

2 = 3 + c ⇒ c = 2 - 3 = - 1

y = 3x - 1 ← equation of parallel line

5 0
3 years ago
What is an equation that passes through (18,2) and is parallel to 3y-x=-12
MrRa [10]
3(2)-18=-12
6-18 = -12
-12 = -12
5 0
3 years ago
Other questions:
  • Help Please I really think its c for 7
    5·1 answer
  • There is a three-Legged
    13·1 answer
  • A rectangle is placed around a semicircle as shown below. The length of the rectangle is 4ft. Find the area if shaded region. us
    15·1 answer
  • Solve the equation for L. A=1/2πw^2 2Lw
    8·1 answer
  • What is the average speed of a biker if she biked 4.25 of a mile in 25 minutes?
    6·1 answer
  • The point A(5, -2) has been transformed to A'(-5, 2). The transformation is described as ______.
    5·1 answer
  • PLEASE HELP!! I believe you can do it, i just couldn't do it myself but i tried.. Pleaseee help!!
    6·1 answer
  • Can someone help me?
    13·1 answer
  • I need help, it’s geometry:
    15·1 answer
  • How do you solve 33 + 27.2 – (6.8 + 24) – 3.1 i need it for an paper im doing and need to show my work
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!