Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
Answer:
Width of the rectangular Park = 11 feet
Step-by-step explanation:
Given that the total length of the fencing is 62 feet. As has to be fenced around a rectangular park , it would be the perimeter of the rectangular park.
Also Shana wants the length of the run to be 20 feet. Hence the length of the park is 20 feet.
Here we will use the formula for perimeter to find the width of the run
Perimeter = 2(l+w)
62=2(l+w)
l+w = 
l+w=31
20+w=31
w=31-20
w=11
Hence the width of the run for her dog in park would be 11 feet.
Answer:
6 · 10⁻³
Step-by-Step Explanation:
The number 6 time 10 to the power -3 is 6 · 10⁻³ in standard form.
First let's find how many hours it will take to get there.
270/45 = 6
It will take 6 hours to get there.
6 hours past 1:30 is 7:30.
The answer is 7:30 p.m.
Hope this helped! If you have anymore questions or don't understand, please comment or DM me. :)
Answer:
None of these answers would work. You may have typed some wrong perhaps?