Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
It's not time to try and simplify it until you HAVE an equation. You won't have an equation until you write down what. V*4x is equal to.
Answer:
5.5
Step-by-step explanation:
The y-intercept of the line graph shown above is the value of the point where the line cuts the y-axis. The y-intercept of this graph is between 5 and 6. However, we can get an accurate value by calculation. This can be done by generating an equation of the line.
Recall the slope-intercept equation,
, where m = slope of the line, b = y-intercept.
To generate the equation of the line, first find slope using the points (-2, 7) and (6, 1):
.
Substitute m = ¾ and the coordinates (6, 1) into the slope-intercept equation to find the y-intercept (b):






Therefore, b = y-intercept = 5.5.
To generate the equation of the line, plug in the values of m and b, we would have:
y = ¾x + 5.5
The y-intercept of the line of the graph is 5.5.
Answer:
(7, 0) and (-5, 0)
Step-by-step explanation:
<u>Vertex form</u>
(where (h, k) is the vertex)
Given:

Given:



Therefore:

The x-intercepts are when y = 0






Therefore, the x-intercepts are (7, 0) and (-5, 0)
Answer:
11.2
Step-by-step explanation:
a right triangle in an octagon is 1/2 a side length so to find the side length you must add .7 + .7. Next to find the perimeter of the octagon you must multiply the number of sides 8 by .14 which equals 11.2