Answer:
exact Form:(0,),(1,3)
Equation Form: ( 0, )
x=1 y=3
Step-by-step explanation:
The question is incomplete. The complete question is as follows:
Solve for X. Assume X is a 2x2 matrix and I denotes the 2x2 identity matrix. Do not use decimal numbers in your answer. If there are fractions, leave them unevaluated.
· X·
=<em>I</em>.
First, we have to identify the matrix <em>I. </em>As it was said, the matrix is the identiy matrix, which means
<em>I</em> =
So,
· X·
= ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Isolating the X, we have
X·
=
- ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Resolving:
X·
= ![\left[\begin{array}{ccc}2-1&8-0\\-6-0&-9-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2-1%268-0%5C%5C-6-0%26-9-1%5Cend%7Barray%7D%5Cright%5D)
X·
=![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, we have a problem similar to A.X=B. To solve it and because we don't divide matrices, we do X=A⁻¹·B. In this case,
X=
⁻¹·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, a matrix with index -1 is called Inverse Matrix and is calculated as: A . A⁻¹ = I.
So,
·
=![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
9a - 3b = 1
7a - 6b = 0
9c - 3d = 0
7c - 6d = 1
Resolving these equations, we have a=
; b=
; c=
and d=
. Substituting:
X=
·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Multiplying the matrices, we have
X=![\left[\begin{array}{ccc}\frac{8}{11} &\frac{26}{11} \\\frac{39}{11}&\frac{198}{11} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B8%7D%7B11%7D%20%26%5Cfrac%7B26%7D%7B11%7D%20%5C%5C%5Cfrac%7B39%7D%7B11%7D%26%5Cfrac%7B198%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
Hello,
-9n²+79=-18n
==>9n²-18n-79=0
==>9(n²-2n+1-1)-79=0
==>9(n-1)²-88=0
==>[3(n-1)-2√22][3(n-1)+2√22]=0
==>3(n-1)=2√22 or 3(n-1)=-2√22
==>n-1=2/3*√22 or n-1=-2/3*√22
==>n=1+2/3*√22 or n=1-2/3*√22
Answer:
There are 5 black counters in the bag.
Step-by-step explanation:
15 green counters in the bag
The proportion of green counters is given by:

So, we have that, the total is x. So


There are 30 total counters.
How many black counters are in the bag ?
A sixth of the counters are black. So

There are 5 black counters in the bag.