1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
7

A pumpkin is launched directly upwards at 72 feet per second from a platform 24 feet high. The pumpkins height, h, at time t sec

onds can be represented by the equation h(t) = -16t^2+ 72t +24.Find the maximum height of the pumpkin and the time it takes to reach this point.
Mathematics
1 answer:
STALIN [3.7K]3 years ago
8 0

Answer: Maximum height =  105 feet

And, It takes 9/4 seconds to reach that point.

Step-by-step explanation:

Here the given function that shows the height of the pumpkin,

h(t) = -16t^2 + 72t + 24 --------(1)

Where t is the time in second.

Differentiating equation (1) with respect to t,

We get,    h'(t) = -32 t + 72

Again differentiating above equation with respect to t,

We get,   h''(t) = -32

For maximum or minimum,    h'(t) = 0

- 32 t + 72 = 0

32 t = 72

t = \frac{9}{4}

At t = 9/4 , h''(t) = Negative value,

Therefore, At t = 9/4 seconds, h(t) is maximum,

And, the maximum value is,

h(\frac{9}{4} ) = -16(\frac{9}{4})^2 + 72(\frac{9}{4}) + 24

h(\frac{9}{4} ) = -16(\frac{81}{16})+ 72(\frac{9}{4}) + 24

h(\frac{9}{4} ) = -81 + 162 + 24=105

Therefore, the maximum height of the pumpkin is 105 feet at 9/4 seconds

You might be interested in
What two decimals are equivalent to 3.300​
LenKa [72]

Answer:

3,3 and 3,30

Step-by-step explanation:

No matter how many zeros you wax on or wane off, you will still have equivalent values.

I am joyous to assist you anytime.

6 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
An amusement park charges $5 for admission and $.80 for each ride. You go to the park with $13. Which inequality represents this
RSB [31]

Answer:

Answer Placeholder (I'm going to solve it and answer when I'm done)

Step-by-step explanation:

7 0
3 years ago
anthonyś yearly budget for the furniture in his house is $18,000 he spent 9% of the budget on the family room how much did he sp
nata0808 [166]

Answer:

  $1620

Step-by-step explanation:

  9% of budget = 0.09 × $18000 = $1620

Anthony spent $1620 on the family room.

3 0
3 years ago
Luis wants to buy a pair of jeans that costs $24. If the tax rate is
muminat

Answer:

25 68/100

Step-by-step explanation:

percent means 1/100th.

7 percent=7/100

24 times 7/100= 1 68/100

24+1 68/100=25 68/100

7 0
3 years ago
Other questions:
  • Denise provides water for the runners at her schools 10K road race. She has a container that holds 678 ounces of water. How many
    9·2 answers
  • What is the value of x?
    12·2 answers
  • In a mall 1/15 of the stores sell shoes. There are 180 stores in the mall. How many sell shoes?
    15·2 answers
  • Please help if you can
    14·1 answer
  • Will bought a new skateboard that was on sale. The original price of the skateboard was $60. The store had marked it down by 20
    15·2 answers
  • Find the volume: 8 ft 4 ft 14.5 ft<br>help pls-?​
    7·2 answers
  • two letters weigh 90g together. one letter weighs twice as much as the other. what is the weight of the heavier letter?
    15·1 answer
  • Find the value of Y. PLEASE HURRY
    9·1 answer
  • An Internet service provider allows a certain number of free hours each month and then charges for each additional hour used. We
    15·1 answer
  • What happens when you reflect a shape over the x-axis and then the y-axis. What is the one transformation that could have been p
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!