Answer:
The answer is below
Step-by-step explanation:
Let a complex z = r(cos θ + isinθ), the nth root of the complex number is given as:

Given the complex number z = 81(cos(3π/8)+isin(3π/8)), the fourth root (i.e n = 4) is given as follows:
![z_{k=0}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(0)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(0)\pi}{4} ))=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})] \\z_{k=0}=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})]\\\\z_{k=1}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(1)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(1)\pi}{4} ))=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})] \\z_{k=1}=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})]\\\\](https://tex.z-dn.net/?f=z_%7Bk%3D0%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D0%7D%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D1%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D1%7D%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5C)
![z_{k=2}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(2)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(2)\pi}{4} ))=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})] \\z_{k=2}=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})]\\\\z_{k=3}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(3)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(3)\pi}{4} ))=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})] \\z_{k=3}=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})]](https://tex.z-dn.net/?f=z_%7Bk%3D2%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D2%7D%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D3%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D3%7D%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D)
Answer:
f'(x) > 0 on
and f'(x)<0 on
Step-by-step explanation:
1) To find and interval where any given function is increasing, the first derivative of its function must be greater than zero:

To find its decreasing interval :

2) Then let's find the critical point of this function:
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}[6-2^{2x}]=\frac{\mathrm{d} }{\mathrm{d}x}[6]-\frac{\mathrm{d}}{\mathrm{d}x}[2^{2x}]=0-[ln(2)*2^{2x}*\frac{\mathrm{d}}{\mathrm{d}x}[2x]=-ln(2)*2^{2x}*2=-ln2*2^{2x+1\Rightarrow }f'(x)=-ln(2)*2^{2x}*2\\-ln(2)*2^{2x+1}=-2x^{2x}(ln(x)+1)=0](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5B6-2%5E%7B2x%7D%5D%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B6%5D-%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2%5E%7B2x%7D%5D%3D0-%5Bln%282%29%2A2%5E%7B2x%7D%2A%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dx%7D%5B2x%5D%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%3D-ln2%2A2%5E%7B2x%2B1%5CRightarrow%20%7Df%27%28x%29%3D-ln%282%29%2A2%5E%7B2x%7D%2A2%5C%5C-ln%282%29%2A2%5E%7B2x%2B1%7D%3D-2x%5E%7B2x%7D%28ln%28x%29%2B1%29%3D0)
2.2 Solving for x this equation, this will lead us to one critical point since x' is not defined for Real set, and x''
≈0.37 for e≈2.72

3) Finally, check it out the critical point, i.e. f'(x) >0 and below f'(x)<0.
31.25 miles because I don’t know
Population is 200 and sample is 30
Thank you hope this helps