1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
2 years ago
5

P minus 11 equals 39

Mathematics
2 answers:
Harman [31]2 years ago
5 0

Answer:

p=50

Step-by-step explanation:

39 add 11

Assoli18 [71]2 years ago
4 0
P - 11 = 39
p = 50

you gotta add 11 to both sides, the -11 and 11 cross out, and 39 and 11 add to 50
You might be interested in
**Spam answers will not be tolerated**
Morgarella [4.7K]

Answer:

f'(x)=-\frac{2}{x^\frac{3}{2}}

Step-by-step explanation:

So we have the function:

f(x)=\frac{4}{\sqrt x}

And we want to find the derivative using the limit process.

The definition of a derivative as a limit is:

\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

Therefore, our derivative would be:

\lim_{h \to 0}\frac{\frac{4}{\sqrt{x+h}}-\frac{4}{\sqrt x}}{h}

First of all, let's factor out a 4 from the numerator and place it in front of our limit:

=\lim_{h \to 0}\frac{4(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x})}{h}

Place the 4 in front:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}

Now, let's multiply everything by (√(x+h)(√(x))) to get rid of the fractions in the denominator. Therefore:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}(\frac{\sqrt{x+h}\sqrt x}{\sqrt{x+h}\sqrt x})

Distribute:

=4\lim_{h \to 0}\frac{({\sqrt{x+h}\sqrt x})\frac{1}{\sqrt{x+h}}-(\sqrt{x+h}\sqrt x)\frac{1}{\sqrt x}}{h({\sqrt{x+h}\sqrt x})}

Simplify: For the first term on the left, the √(x+h) cancels. For the term on the right, the (√(x)) cancel. Thus:

=4 \lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }

Now, multiply both sides by the conjugate of the numerator. In other words, multiply by (√x + √(x+h)). Thus:

= 4\lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }(\frac{\sqrt x +\sqrt{x+h})}{\sqrt x +\sqrt{x+h})}

The numerator will use the difference of two squares. Thus:

=4 \lim_{h \to 0} \frac{x-(x+h)}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Simplify the numerator:

=4 \lim_{h \to 0} \frac{x-x-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}\\=4 \lim_{h \to 0} \frac{-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Both the numerator and denominator have a h. Cancel them:

=4 \lim_{h \to 0} \frac{-1}{(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Now, substitute 0 for h. So:

=4 ( \frac{-1}{(\sqrt{x+0}\sqrt x)(\sqrt x+\sqrt{x+0})})

Simplify:

=4( \frac{-1}{(\sqrt{x}\sqrt x)(\sqrt x+\sqrt{x})})

(√x)(√x) is just x. (√x)+(√x) is just 2(√x). Therefore:

=4( \frac{-1}{(x)(2\sqrt{x})})

Multiply across:

= \frac{-4}{(2x\sqrt{x})}

Reduce. Change √x to x^(1/2). So:

=-\frac{2}{x(x^{\frac{1}{2}})}

Add the exponents:

=-\frac{2}{x^\frac{3}{2}}

And we're done!

f(x)=\frac{4}{\sqrt x}\\f'(x)=-\frac{2}{x^\frac{3}{2}}

5 0
2 years ago
What does 5^6 equal?
lozanna [386]

Answer:

15625

Step-by-step explanation:

4 0
3 years ago
I really need help with alg 2 please <br> 9x^1/5 - 2x^1/5
ExtremeBDS [4]
Since these two have the same power and variable, you can just subtract right away. It’s going to be 7x^1/5

7 0
3 years ago
Please answer this correctly without making mistakes
marysya [2.9K]

Answer:

A digit that makes this sentence true is 4.

Step-by-step explanation:

Since the first digit in the number to the left is 3, you simply have to find a digit greater than 3. Here are the possibilities:

4

5

6

7

8

and

9

Out of any of these you can choose, I chose 4.

4 0
3 years ago
Find the p-value: An independent random sample is selected from an approximately normal population with an unknown standard devi
vladimir1956 [14]

Answer:

(a) <em>p</em>-value = 0.043. Null hypothesis is rejected.

(b) <em>p</em>-value = 0.001. Null hypothesis is rejected.

(c) <em>p</em>-value = 0.444. Null hypothesis is not rejected.

(d) <em>p</em>-value = 0.022. Null hypothesis is rejected.

Step-by-step explanation:

To test for the significance of the population mean from a Normal population with unknown population standard deviation a <em>t</em>-test for single mean is used.

The significance level for the test is <em>α</em> = 0.05.

The decision rule is:

If the <em>p - </em>value is less than the significance level then the null hypothesis will be rejected. And if the <em>p</em>-value is more than the value of <em>α</em> then the null hypothesis will not be rejected.

(a)

The alternate hypothesis is:

<em>Hₐ</em>: <em>μ</em> > <em>μ₀</em>

The sample size is, <em>n</em> = 11.

The test statistic value is, <em>t</em> = 1.91 ≈ 1.90.

The degrees of freedom is, (<em>n</em> - 1) = 11 - 1 = 10.

Use a <em>t</em>-table t compute the <em>p</em>-value.

For the test statistic value of 1.90 and degrees of freedom 10 the <em>p</em>-value is:

The <em>p</em>-value is:

P (t₁₀ > 1.91) = 0.043.

The <em>p</em>-value = 0.043 < <em>α</em> = 0.05.

The null hypothesis is rejected at 5% level of significance.

(b)

The alternate hypothesis is:

<em>Hₐ</em>: <em>μ</em> < <em>μ₀</em>

The sample size is, <em>n</em> = 17.

The test statistic value is, <em>t</em> = -3.45 ≈ 3.50.

The degrees of freedom is, (<em>n</em> - 1) = 17 - 1 = 16.

Use a <em>t</em>-table t compute the <em>p</em>-value.

For the test statistic value of -3.50 and degrees of freedom 16 the <em>p</em>-value is:

The <em>p</em>-value is:

P (t₁₆ < -3.50) = P (t₁₆ > 3.50) = 0.001.

The <em>p</em>-value = 0.001 < <em>α</em> = 0.05.

The null hypothesis is rejected at 5% level of significance.

(c)

The alternate hypothesis is:

<em>Hₐ</em>: <em>μ</em> ≠ <em>μ₀</em>

The sample size is, <em>n</em> = 7.

The test statistic value is, <em>t</em> = 0.83 ≈ 0.82.

The degrees of freedom is, (<em>n</em> - 1) = 7 - 1 = 6.

Use a <em>t</em>-table t compute the <em>p</em>-value.

For the test statistic value of 0.82 and degrees of freedom 6 the <em>p</em>-value is:

The <em>p</em>-value is:

P (t₆ < -0.82) + P (t₆ > 0.82) = 2 P (t₆ > 0.82) = 0.444.

The <em>p</em>-value = 0.444 > <em>α</em> = 0.05.

The null hypothesis is not rejected at 5% level of significance.

(d)

The alternate hypothesis is:

<em>Hₐ</em>: <em>μ</em> > <em>μ₀</em>

The sample size is, <em>n</em> = 28.

The test statistic value is, <em>t</em> = 2.13 ≈ 2.12.

The degrees of freedom is, (<em>n</em> - 1) = 28 - 1 = 27.

Use a <em>t</em>-table t compute the <em>p</em>-value.

For the test statistic value of 0.82 and degrees of freedom 6 the <em>p</em>-value is:

The <em>p</em>-value is:

P (t₂₇ > 2.12) = 0.022.

The <em>p</em>-value = 0.444 > <em>α</em> = 0.05.

The null hypothesis is rejected at 5% level of significance.

5 0
3 years ago
Other questions:
  • Fourth roots of 81(cos320°+isin320°)
    10·1 answer
  • Use elimination method to solve<br> 5x+y=-10<br> 7x-3y=-36
    13·1 answer
  • Please help me...<br><br> I think its the third graph or the last .<br> correct me if im wrong
    9·2 answers
  • 4x+9xy-3xy=? I really need help please
    6·1 answer
  • A​ student's scores on five tests are 98​, 99​, 86​, 89 and 70. What must the score be on the next test so that the average is 8
    6·1 answer
  • PLEASE HELP AS QUICKLY AS POSSIBLE THANK YOU :)​
    9·2 answers
  • A shelf has 4 blue pairs of pants, 2 black pairs of pants, 1 white pair of pants, and 3 tan pairs of pants. You randomly choose
    15·1 answer
  • I need help please giving brainlest which statement accurately describes the scatter plot
    10·1 answer
  • PLEASE HElP
    10·1 answer
  • PLSS HELP. <br> Simplify the expression. Write the answer using scientific notation (7x10^5)^2
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!