Answer:
v=728ft^3
Step-by-step explanation:
Answer:
hope this helps you
have a great day God bless you
The reason the "+ C" is not needed in the antiderivative when evaluating a definite integral is; The C's cancel each other out as desired.
<h3>How to represent Integrals?</h3>
Let us say we want to estimate the definite integral;
I = 
Now, for any C, f(x) + C is an antiderivative of f′(x).
From fundamental theorem of Calculus, we can say that;

where Ф(x) is any antiderivative of f'(x). Thus, Ф(x) = f(x) + C would not work because the C's will cancel each other.
Read more about Integrals at; brainly.com/question/22008756
#SPJ1
Answer:
5
Step-by-step explanation: