![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ N(\stackrel{x_1}{-3}~,~\stackrel{y_1}{10})\qquad A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ NA=\sqrt{(6+3)^2+(3-10)^2}\implies NA=\sqrt{130} \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad D(\stackrel{x_1}{6}~,~\stackrel{y_1}{-1}) \\\\\\ AD=\sqrt{(6-6)^2+(-1-3)^2}\implies AD=4 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20N%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B10%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20NA%3D%5Csqrt%7B%286%2B3%29%5E2%2B%283-10%29%5E2%7D%5Cimplies%20NA%3D%5Csqrt%7B130%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20D%28%5Cstackrel%7Bx_1%7D%7B6%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%20%5C%5C%5C%5C%5C%5C%20AD%3D%5Csqrt%7B%286-6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20AD%3D4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now that we know how long each one is, let's plug those in Heron's Area formula.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{130}\\ b=4\\ c=\sqrt{202}\\[1em] s=\frac{\sqrt{130}+4+\sqrt{202}}{2}\\[1em] s\approx 14.81 \end{cases} \\\\\\ A=\sqrt{14.81(14.81-\sqrt{130})(14.81-4)(14.81-\sqrt{202})} \\\\\\ A=\sqrt{324}\implies A=18](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B130%7D%5C%5C%20b%3D4%5C%5C%20c%3D%5Csqrt%7B202%7D%5C%5C%5B1em%5D%20s%3D%5Cfrac%7B%5Csqrt%7B130%7D%2B4%2B%5Csqrt%7B202%7D%7D%7B2%7D%5C%5C%5B1em%5D%20s%5Capprox%2014.81%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B14.81%2814.81-%5Csqrt%7B130%7D%29%2814.81-4%29%2814.81-%5Csqrt%7B202%7D%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B324%7D%5Cimplies%20A%3D18)
Answer: 52 seconds.
Step-by-step explanation:
|-3| + 23 = 26. 26 x 2 = 52.
Answer:
Step-by-step explanation:
660
So for this you need to set them equal to each other! 3x+100=5x-160
now you combine like terms and solve!
When you estimate, you round the numbers up or down. In this case, I'll round 4,377 down to 4,000, because 8 divides nicely into that number. 4,000/8 = 500.
You could estimate it to be about 500.
Hope that helped you.
(You can round your own numbers if you would like, but remember that rounding should make it easier for you to solve!)