1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
11

Gabriella is drawing a diagram of a ramp for science class part of the diagram Is shown.

Mathematics
1 answer:
bekas [8.4K]3 years ago
3 0

answer is 30°

50-20=30°

hope it helps

You might be interested in
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
The number of birds in a forest is decreasing by 3% every
AlexFokin [52]

Answer:

4266

Step-by-step explanation:

Okay! let's start with finding what 3% of 5400 birds is

3% is .03 as a decimal. We can find 3% of 5400 by multiplying 5400 by .03

5400×.03= 162

If our rainforest is losing 3% a year, that means we are losing 162 birds a year.

Let's turn it into an equation! x will be the number of years

5400-162x= number of birds left after x years

Now put 7 in for x

5400-(162×7)= 4266 birds

Hope this helps!

AbbyMay :)

7 0
3 years ago
WILL MARK BRAINLIEST
Kipish [7]
A. -4

b. -10

c. 10

d. -21

e. 2

f. 46
5 0
3 years ago
Read 2 more answers
Is -8.43 a integer whole number or a rational number ?
s2008m [1.1K]

Answer:

rational number

Step-by-step explanation:

A whole number would be just 8. Nothing behind it.

5 0
4 years ago
Write the ratios for sin A and cos A. The triangle is not drawn to scale
Bumek [7]

Answer:

sin(A)=\frac{48}{50}, cos(A)=\frac{14}{50}

Step-by-step explanation:

Part a) Find the sin(A)

we know that

In the right triangle ABC

sin(A)=\frac{BC}{AB} ----> the sine of angle (A)  is the opposite side angle (A) divided by the hypotenuse

substitute the values

sin(A)=\frac{48}{50}

Part b) Find the cos(A)

we know that

In the right triangle ABC

cos(A)=\frac{AC}{AB} ----> the cosine of angle (A)  is the adjacent side angle (A) divided by the hypotenuse

substitute the values

cos(A)=\frac{14}{50}

5 0
3 years ago
Other questions:
  • To which set or sets does -20 belong?
    5·2 answers
  • A pronghorn antelope can
    7·2 answers
  • Brandon has 7 ten dollar bills and 8 one dollar bills Joshua has 3 fewer ten dollar bills and 4 fewer one dollar bills than Bran
    11·1 answer
  • Helllllppppppppppp ....................
    10·2 answers
  • The number part of a term is called?
    12·2 answers
  • Lol it’s me again (help)
    14·1 answer
  • If $3000 is invested at 3% interest, find the value of the investment at the end of 7 years if the interest is compounded as fol
    6·1 answer
  • Will it cost more to rent from Company A or Company B if "Ali" rents the bounce house for 3 hours? 5 hours? 10 hours?
    9·1 answer
  • PLEASE SOME ONE ANSWER MY QUESTION (MOST RECENT)
    13·2 answers
  • PLEASE HELP 50 POINTS I WILL GIVE BRAINLIEST
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!