If a large animal such as a human being had a thin light exoskeleton, there would be several problems. Since the exoskeleton would not be able to hold its shape, it would be difficult to keep the vital organs protected and the organism would be subject to damaging levels of stress just by moving around. They are not strong enough to hold organs or hold its shape.
Answer:
Explanation:
My best bet is DNA methylation at the site of Tweedledum's leptin gene or Histone Acetylation at the site of Tweedledee's gene.
B/c DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. So this is probably repressing Tweedledum's leptin gene trancription which is not happening in Tweedledee.
Additionally, Histone Acetylation at site of Tweedledee's gene increases her trancription b/c Histone acetylation causes DNA to be more accessible and leads to more transcription factors being able to reach the DNA. Thus, acetylation of histones is known to increase the expression of genes through transcription activation.
*To figure the length of one cell, divide the number of cells that cross the diameter of the field of view into the diameter of the field of view. For example, if the diameter of the field is 5 mm and you estimate that 50 cells laid end to end would cross the diameter, then 5 mm/50 cells = 0.1mm/cell.
Answer:
b. What is the difference between dominant and recessive traits? Dominant traits are always expressed when the connected allele is dominant, even if only one copy of the dominant trait exists. Recessive traits are expressed only if both the connected alleles are recessive.
c. In the simplest possible terms, purebreds are the offspring that result from mating between genetically similar parents while hybrids are the offspring that are the result of mating between two genetically dissimilar parents.
Explanation: