The rule of the function g (x) will be;
⇒ g (x) = - x + 3
What is mean by Translation?
A transformation that occurs when a figure is moved from one location to another location without changing its size or shape is called translation.
Given that;
g (x) is the indicated transformation of f (x).
The rule of f (x) is,
f (x) = - x + 5 ; horizontally translation 2 units left.
Now,
The rule of f (x) is,
f (x) = - x + 5 ; horizontally translation 2 units left.
Since, g (x) is the indicated transformation of f (x).
So, g (x) = f (x + 2)
Hence, We get;
g (x) = - (x + 2) + 5
= - x - 2 + 5
= - x + 3
Thus, The rule of the function g (x) will be;
⇒ g (x) = - x + 3
Learn more about the transformation visit:
brainly.com/question/1620969
#SPJ1
Answer:
15,000$
Step-by-step explanation:
According to the information given, profits are divided equally into 4 parts
Since the total profit for the first month is 100,000$ each party will receive a sum of 25,000$. This means that Y also receives the same amount
Now if the profits were divided in proportion to the investments made we first find the proportion on investment made by Y.
The total investment made is 6000$ + 2000$ + 8000$ + 4000$ = 20,000$. Out of this, the amount invested by Y is 8000$
finding the proportional profit of Y

=40,000$
So Y receives 40,000 - 25,000 = 15,000 less
Answer:
I think its 336. I might be wrong though, But I hope I am right.
Step-by-step explanation:
Answer:
Step-by-step explanation:
let sum of zeros=s
and product of zeros=p
then quadratic equation is x²-sx+p=0
x²-(-1/2)x+(-3)=0
x²+1/2 x-3=0
2x²+x-6=0
We can use the SSS congruence theorem to prove that the two triangles in the attached figure are congruent. The SSS or side-side-side theorem states that each side in the first triangle must have the same measurement or must be congruent on each of the opposite side of another triangle. In this problem, for the first triangle, we have sides AC, CM, AM while in the second triangle we have sides BC, CM, and BM. By SSS congruent theorem, we have the congruent side as below:
AC = BC
CM = CM
AM = BM
The answer is SSS theorem.