Answer:
<em>The energy level diagram is used to represent the energy states available in each atom. When an electron is in an energy state, it emits nor absorbs radiation. A photon is emitted or absorbed when an electron transitions from one energy state to another.</em>
Explanation:
Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
I will walk through different captions if one I say isn’t correct.
1) As the humans impact the environment, there will be consequences such as global warming. 2) When the long-term consequences has come, human life would become more difficult and complicated.
3) If the himan life hasn’t taken care of the global, it wouldn’t be safe and consequences would attracted by this cause. (As said above.)
Thank you!
The solution would be like
this for this specific problem:
<span><span>
E</span>=</span><span>mc</span>ΔT<span> <span>
= (</span>15<span> g</span><span>)(</span>1.91<span> <span>J<span><span>g∘</span>C</span></span>)(</span>25<span><span> ∘</span>C</span>−15<span><span> ∘</span>C</span><span>)
</span></span>= 28.65 * 10
= 286.5
<span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
1) Reaction: 3Mg + N₂ → Mg₃N₂.
m(Mg) = 0,225 g
n(Mg) = 0,225 g ÷ 24,3 g/mol = 0,009 mol.
n(Mg) : n(N₂) = 3 : 1
n₁(N₂) = 0,003 mol.
n₂(N₂) = 0,5331 ÷ 28 = 0,019 mol.
n₃(N₂) = 0,019 mol - 0,003 mol = 0,016, m(N₂) = 0,016mol·28g/mol=0,4467g.
or simpler: m(N₂) = 0,225 g + 0,5331 - 0,3114 g = 0,4467 g.
2) Answer is: 6 <span>of fluorine atoms are combined with one uranium atom.
</span>m(U) = 209 g.
m(F) = 100 g.
n(U) = m(U) ÷ M(U)
n(U) = 209 g ÷ 238 g/mol.
n(U) = 0,878 mol.
n(F) = m(F) ÷ M(F)
n(F) = 5,263 mol
n(U) : n(F) = 0,878 mol : 5,263 mol /:0,878.
n(U) : n(F) = 1 : 6.
n - amount of substance